unversitat unz | JKU

TNF

Technisch-Naturwissenschaftliche
Fakultat

Semantic Assistance for Industrial Automation
Based on Contracts and Verification

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

DI (FH) Dominik Hurnaus

Angefertigt am:
Institut fur Systemsoftware

Beurteilung:
Prof. Dr. Dr. h.c. Hanspeter Mossenbock (Betreuung)
Prof. Dr. Armin Biere

Mitwirkung:
Dipl.-Ing. Dr. Herbert Prahofer

Linz, Oktober 2009

Eidesstattliche Erklarung

Ich erklare an Eides statt, dass ich die vorliegende Dissertation selbstdndig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt bzw. die wortlich oder sinngeméf entnommenen
Stellen als solche kenntlich gemacht habe.

Linz, Oktober 2009 DI (FH) Dominik Hurnaus

il

Acknowledgment

I wish to thank all those who helped me. Without them, I could not have
completed this thesis. First and foremost, I thank my advisor Prof. Hanspeter
Mossenbock and Dr. Herbert Prahofer for their support and comments on
ideas, papers and this thesis.

I am particular grateful to Dr. Herbert Prahofer for commenting on drafts
of the thesis and enhancing the quality of this work. Without his helpful
comments and discussions this work would not have been possible. Likewise
I thank Prof. Armin Biere for taking the responsibility of the second thesis
advisor and dissertation committee member.

Special thanks go to my friends and colleagues DI Markus Loéberbauer,
DI Roland Schatz, DI Christian Wirth, and DI Reinhard Wolfinger for the
fruitful discussions which helped to develop ideas put forward in the thesis.
Likewise I thank Johannes Gas: Strafkmayr for his contributions to the pro-
gram visualization tool and for helping carrying out the evaluation studies.

This work has been conducted in the module "Domain-Specific Languages
for Industrial Automation” at the Christian Doppler Laboratory for Auto-
mated Software Engineering in cooperation with KEBA AG. Therefore, I
want to thank KEBA AG and the Christian Doppler Forschungsgesellschaft
for funding the project and our contact persons at KEBA AG, Dr. Ernst
Steller, Dr. Michael Garstenauer, and DI Gottfried Schmidleitner for their
continuous support.

My deepest and sincere thanks go to my girlfriend Juliane for her love and
patience. She continuously encouraged me to do my best and she was always
there when I needed her most. Finally, I would like to thank everyone who
contributed to this thesis and especially my family for their great support
during the years of study.

il

ACKNOWLEDGMENT

Kurzfassung

In der Industrieautomation miissen Endbenutzer oft kleinere Anderungen an
Steuerungsprogrammen der Maschinen vornehmen. Diese Endbenutzer sind
meist Maschinenbediener, die wenig bis gar keine Programmierkompetenz
haben. Dennoch miissen sie in sicherheitskritsche Steuerungsprogramme ein-
greifen, bei denen Testlaufe nicht moglich sind.

Der in dieser Arbeit beschriebene Ansatz wird basiert auf Verifikation von
Steuerungsprogrammen. Mittels Verifikation wird bewiesen, dass ein Softwa-
resystem bestimmte Eigenschaften in jeder moglichen Ausfiihrung einhélt.
Fiir die Verifikation von Software ist es notwendig, die gewiinschten Eigen-
schaften der Software in Kontrakten zu beschreiben. Die Kontrakte, die in
dieser Arbeit verwendet werden, beschreiben giiltige Aufruffolgen und Ein-
schriankungen.

Semantic Assistance - ein neues Konzept, das in dieser Arbeit vorgestellt
wird - verwendet die Ergebnisse der Verifikation, um Endbenutzern bei der
Programmierung zu helfen. Diese Hilfe umfasst interaktive Unterstiitzung
bei Programmaéanderungen, Vorschliage giiltiger Programmteile sowie Visua-
lisierung von Zustéinden von Maschinenkomponenten. Im Falle einer Verlet-
zung der Kontrakte konnen automatische Programménderungen vorgeschla-
gen werden, die die Programmfehler korrigieren.

Verifikation und Semantic Assistance wurden in die Entwicklungsumge-
bung der doménenspezifischen Sprache MONACO integriert. Fallstudien zei-
gen, dass der Ansatz von Kontrakten und Semantic Assistance praktikabel
ist. Dariiber hinaus wurde festgestellt, dass Einschrankungen auf MoNACO
Systemen unkompliziert gefunden werden kénnen und die statische Uberprii-
fung dieser Einschriankungen die Laufzeitressource der Steuerungshardware
entlasten.

il

iv

KURZFASSUNG

Abstract

In the field of industrial automation end users often have the task of making
changes and small adaptations to control programs of their machines. These
end users (machine operators) usually lack software engineering expertise, yet
they have to intervene in safety-critical, highly dependable systems where it
is not possible to run any offline tests.

Verification is used to proof that specific properties of software systems
hold in every possible execution of the system. This is in contrast to testing,
which can only show that a property holds in a given situation with a de-
fined input. For software verification it is necessary to formally describe these
properties in contracts, containing possible call sequences and constraints on
system states. Information of the intermediate steps of the verification pro-
cess are stored with the software implementation to be reused later.

Semantic Assistance - a new concept introduced in this thesis - uses the
results of a verification process to give guidance to end-user programmers.
This guidance ranges from interactive assistance on valid routine calls to
visualization of program states in form of a schematic view of the machine. In
case of a contract violation, it is possible to automatically generate program
repair proposals to eliminate the violation.

Verification and Semantic Assistance are integrated into the MONACO
IDE, a system for creating control programs with the domain-specific lan-
guage MONACO. Case studies and evaluation results show that this approach
is feasible for different types of control programs. Furthermore, we experi-
enced that finding constraints of systems is uncomplex and checking these
constraints statically removes substantial runtime overhead.

vi

ABSTRACT

Contents

Acknowledgment

Kurzfassung

Abstract

1 Introduction

1.1
1.2
1.3
1.4

Background and Motivation L.
Outline of our Approach
Project History

Structure of the Thesis

2 State of the Art

2.1
2.2

2.3

Code Completion
Formal Methods
2.2.1 Model Checking
2.2.2 Formal Specifications
2.2.3 Satisfiability oo
Belief Revision and Belief Update
2.3.1 Definitionso
2.3.2 Belief Revision

vil

iii

viii CONTENTS
2.3.3 Belief Update 17
2.3.4 Winslett’s Standard Semantics. 18
235 Example 19
2.3.6 The Frame Problem 19
2.3.7 Open vs. Closed World Assumption 20

3 MOoONAcCO 21

3.1 Design Goals 22
3.2 Component Approach 24
3.2.1 Interface Declarations 24
3.2.2 Component Implementations 25
3.2.3 Static Configuration 26
3.3 Reactive System Programming 27
3.3.1 Control Routines 27
3.3.2 Imperative Statements 28
3.3.3 Conditional WAIT 28
3.3.4 Asynchronous Event Handling 29
3.3.5 Parallel Execution Threads 30
3.3.6 Event Signals 31
3.4 Execution Semantics 31
3.4.1 Synchronous Routine Calls 32
3.4.2 Cooperative Multitasking With Fairness 32
3.4.3 Event Broadcast 34
3.5 Example Control Program 34
3.5.1 Example System 35
3.5.2 Component Hierarchy 35

3.5.3 Control Components 37

CONTENTS

4 Contracts and Constraints
4.1 Introduction
4.2 Automata Formalism
4.3 Interface Contract
4.3.1 Pre-, Post-, and Initial-Conditions
4.3.2 Invariantso
4.3.3 SUMMAry
434 Exampleso
4.4 Constraints L
4.5 Notations L
4.5.1 EBNF Notation
4.5.2 Detailed Protocol Contract Notation
4.5.3 Constraint Notation
5 Implementation Automaton
5.1 Automata Formalism
5.2 From MONACO to an Automaton
52.1 Routine Calls 0.
5.2.2 Statement Sequences
5.2.3 Wait Statement
5.2.4 Branch Statement L.
5.2.5 Repetitionso o Lo
5.2.6 Parallel Statement
5.2.7 Asynchronous Event Handling
5.3 Automata Refinement,

6 Verification Approach

6.1 Overview

ix

45
45
47
20
20
o1
02
02
25
26
26
o8
29

61
61
64
64
66
67
68
69
71
73
76

79

CONTENTS

6.2 State Mapping 81
6.2.1 Weak Simulation 81
6.2.2 Approach 81
6.2.3 Algorithm 84
6.24 FExample 86

6.3 Knowledge Update 87
6.3.1 Knowledge Change Operators 88
6.3.2 FExample o 90
6.3.3 Algorithm L 96

6.4 Constraint Checking L. 96

6.5 Reachability Analysis L. 99

6.6 Checking Component Contracts 101
6.6.1 Checking Component Postconditions 101
6.6.2 Checking Unchanged State Properties 102

Semantic Assistance 105

7.1 Search for Proposals 106
7.1.1 Examples oo 107
7.1.2 Interactive Assistance 110

7.2 Program Repair oo 112
721 Goals. 114
7.2.2 Repair Strategies L. 114
7.2.3 Algorithm 116

7.3 Program State Visualization 122
7.3.1 Overview 122
7.3.2 Knowledge Deduction 123

7.3.3 Visualization 124

CONTENTS xi

8 Case Studies and Evaluation 127
8.1 Keplast Injection Molding Machine 127
8.1.1 Contracts o 127
8.1.2 Constraints L 130
8.1.3 End-User Support. 130

8.2 Duerr Paint Supply System 133
8.2.1 Monaco Application 134
8.2.2 Contracts 135
8.2.3 Constraints oL Lo 137
8.2.4 End-User Support. 139

8.3 Program State Visualization Evaluation. 141

8.3.1 Program Visualization Guiding End-User Programming 142
8.3.2 Program Visualization Helping Program Understanding 145

9 Related Work 147
9.1 Verification of Call Sequences 147
9.1.1 Cecil/Cesar 147

9.1.2 Behavior Protocols 149

9.1.3 Interface Grammar 150

9.2 Checking Safety Properties 152
9.3 Program Repair o 153
9.4 Program Visualization 155
10 Summary and Conclusion 157
10.1 Summary 157
10.2 Contributions 159
10.3 Future Worko 160

10.4 Conclusions 160

xii CONTENTS

A Keplast Case Study Constraints 163
B Duerr Case Study Constraints 165
C EBNF Protocol Contract Notation 169
D Detailed Protocol Contract Notation 171
E Constraint Notation 173

Bibliography 177

Chapter 1

Introduction

This thesis presents concepts and tools supporting end-user programming
of industrial automation solutions. In industrial automation the end users,
which can be domain experts or less experienced operators at a machine, often
have to make changes to the control programs of their machine automation
solutions. Those people — while they need to intervene in safety-critical
systems — usually lack software engineering expertiese. Moreover, they often
have to modify programs on a running machine and make those changes
effective without a chance to run offline tests or try the changed program in
a test environment.

We have observed that in such a setting constraints on the operations as
well as dependencies between machine components apply in an obvious and
natural way. Those are constraints on valid sequences of operations of compo-
nents and inter-dependencies between operations of components. Instead of
having these tacit assumptions reside in the minds of end-user programmers,
they should be formalized and used to constrain end-user programmers so
violations cannot occur in the first place.

The work presented in this thesis adopts techniques from formal interface
specification [{AHO1, Mey86], model checking [CGP99], and artificial intelli-
gence [KM91] to make this support possible. Formal interface specification
techniques are used to specify the sequencing constraints of component calls,
knowledge about state properties of components, as well as inter-component
constraints. Model checking and artificial intelligence techniques are then
used to verify that a client program obeys these specifications and constraints.

2 CHAPTER 1. INTRODUCTION

Based on these techniques, we have introduced means to support end
users in programming, which we call Semantic Assistance. This works similar
to code assist techniques (Visual Studio IntelliSense, Eclipse content assist,
...) where programmers get suggestions of syntactically correct method calls
based on the current code position. Semantic Assistance, however, is based
on semantic knowledge represented in component contracts.

1.1 Background and Motivation

The work is based on the domain-specific language MoNaco [PHMOG,
PHWMO07, PHS*08a] which is described in Chapter 3 of this thesis.

MONACO (Modeling Notation for Automation Control) is a domain-
specific language for machine automation programming. It allows program-
ming the reactive part of an automation solution. It therefore has language
constructs to express machine operation sequences, has strong support for
dealing with exceptional situations and allows parallel activities. The behav-
ioral model of MONACO is close to StateCharts [Har87|, although it uses an
imperative, Pascal-like style of programming.

The most essential statements in the MONACO language are synchronous
routine calls which execute control tasks, WAl T statements for implement-
ing wait conditions, and the PARALLEL statement used to allow concurrent
execution of several activities. Additionally, ON-handlers, can be used to im-
plement reactions to exceptional situations.

An important language feature is the component-based approach, i.e.,
components are modular units which exclusively communicate over defined
interfaces. Strict correspondence between the hardware components of the
machine and the software components controlling the machine parts is pur-
sued. The interface specifications in MONACO consist of (1) routines which
represent the actions and tasks that can be fulfilled by this component, and
(2) functions which allow accessing state properties. That means, routines
specify how a component can be controlled and functions specify the feed-
back a component provides.

Moreover, components are arranged in a hierarchical fashion of superor-
dinate and subordinate components which reflects the hierarchical structure

1.2. OUTLINE OF OUR APPROACH 3

of the real machine and accounts for the hierarchical nature of control tasks.
Components that are the leaves of the component hierarchy are called native
components and are implemented in a native language of the control machine
(e.g., C++) to interface with the hardware or lower control layers. Higher up
in the hierarchy there are several coordination components which coordinate
and supervise the operations of their subcomponents. Chapter 3 presents the
language MONACO in more detail.

End-user programming is typically performed at the topmost or higher
control layers. End users are presented a so-called "end-user window" which
provides a limited view of the control program. Typically, an end user is
only allowed to add some functionality, reorder routine calls, add conditional
statements, or change some parameter settings.

On the other side, there are constraints and dependencies on the opera-
tions of the components, which must be enforced in any program. Although
often quite obvious (see Section 8), it is hard or even impossible for end
users to follow these constraints while they modify a program. So far, restric-
tions and constraints are checked in a separate program section. However, the
checks are done at runtime, often resulting in emergency stops and expen-
sive machine downtimes. It is therefore highly desirable to have a means of
checking and enforcing those constraints and restrictions already at compile
time.

1.2 Outline of our Approach

Our approach is based on the specification of dynamic contracts for com-
ponents, automata simulation, a knowledge deduction process which derives
knowledge about program properties at code positions, and assistance tech-
niques which exploit this knowledge. The assistance tools give immediate
feedback on contract and constraint violations, generate proposals of valid
program changes and present those to the end-user programmer. Addition-
ally, the machine state for a certain location in the code can be visualized
at editing time, such that the end-user programmer can get a better under-
standing of a program.

Figure 1.1 depicts an overview of our approach. First, the valid behav-
ior of the components is described in protocol contracts and constraints (2),

4 CHAPTER 1. INTRODUCTION

Impl. Automaton
v

MONACO (1)

Code ?/O\ (3) (4))94 Proposal
(6)

. State Mapping) — Repair
N $// A
Contracts Annotated . ..
Constraints (2) © Tmpl. Automaton\flsuahzamon

Protocol Automata

Figure 1.1: Protocol contracts and the state mapping algorithm are the
basis for a variety of end-user guidance applications.

which are translated into protocol automata. Second, the behavior of the
component implementation is translated into implementation automata (1)
containing control flow information as well as Boolean conditions affecting
the control flow. Next, a state mapping algorithm (3) establishes a weak
simulation relation [Bie08| between the implementation automaton and the
protocol automata of the subcomponents. It associates state knowledge with
states of the automaton and updates this knowledge while checking the imple-
mentation for contract violations. The resulting annotated implementation
automaton (4) is then used in different end-user support systems as follows:

e The IDE provides immediate feedback about contract and constraint
violations at the code position in the editor.

e Valid routine calls (5) to subcomponents are proposed based on the
contracts of the subcomponents while observing constraints.

e Semantic program repair (6) gives proposals on how a program violating
contracts or constraints can be changed such that the resulting program
complies with contracts and constraints.

e Program state visualization (7) uses knowledge generated from the
state mapping algorithm to visualize the state of components at a cer-
tain location in the code.

1.3. PROJECT HISTORY Y

1.3 Project History

This work is part of the project MONACO of the Christian Doppler Lab-
oratory for Automated Software Engineering! at the Institute for System
Software? at the Johannes Kepler University, Linz, Austria®. The laboratory
was founded in February 2006, in cooperation with Keba AG, Austria* and
is funded by the Christian Doppler Forschungsgesellschaft, Austria.

The project started in 2006 with the definition of a first version of
the domain-specific language MONACO, a compiler, and a runtime envi-
ronment [Hur06|, [PHMO6]. In July 2006 a second version of the runtime
environment and a visual programming environment [PHWMO07| has been
created.

In December 2006, first ideas about MONACO code verification and using
contracts to guide end users emerged. We also worked on compilers and run-
time environments in C, the integration into the existing runtime of Keba,
and on an end-user friendly Ul configuration tool based on variability mod-
els [PHS'08a], [HW08]. We started first experiments with contracts and the
description of the behavior of MONACO components. In late 2007, prototypes
of the code verification algorithm existed (yet without pre- and postcondi-
tions), in 2008, the missing pre- and postconditions as well as the program
repair functionality were implemented [PHS*08¢|. In 2009 program visual-
ization support was added [Str09].

1.4 Structure of the Thesis

This thesis is organized as follows: Chapter 2 reviews techniques and tools
which serve as background and motivation for our research. Chapter 3
presents the domain-specific language MONACO. Subsequent Chapters 4—
6 explain the algorithms and data structures used to abstract from MONACO
code, verify it, and generate knowledge. Chapter 7 presents Semantic As-
sistance tools based on the results of the verification process. The tools are

Thttp://ase.jku.at
Zhttp:/ /ssw.jku.at
3http://www.jku.at
4http://www.keba.at
Shttp://www.cdg.ac.at

http://ase.jku.at
http://ssw.jku.at
http://www.jku.at
http://www.keba.at
http://www.cdg.ac.at

6 CHAPTER 1. INTRODUCTION

used to guide end users. In case of contract violations they help finding valid
program repair strategies. A state deduction process is used for a design-time
program visualization tool. Case studies in Chapter 8 demonstrate the appli-
cability of the presented approach to realistic problems. Chapter 9 discusses
related projects on verification of component-based systems, description of
component behavior, program repair, and program visualization. Finally,
Chapter 10 concludes the thesis with a summary of the most significant
parts and a summary of the contributions.

Chapter 2

State of the Art

1
Beware of bugs in the above code;

I'have only proved it correct,
not tried it.”
- Donald Knuth

This chapter provides a brief overview over the state of the art of the top-
ics which form the background of this work. Section 2.1 introduces code com-
pletion systems currently available for popular development environments.
Section 2.2 reviews formal methods, model checking, and propositional sat-
isfiability. The last section introduces the topic of belief revision and belief
update.

2.1 Code Completion

Source code text editors in modern integrated development environments
(IDEs) give programmers versatile support in performing their tasks. Besides
syntax highlighting, IDEs also provide users with suggestions and informa-
tion related to the current context. This information is either displayed as
an overview over the current context (e.g., the Outline view in the Eclipse
IDE) or as syntax-directed code completion proposals that pop up while the
programmer types code.

While these popup menus are named differently in their respective IDEs

7

8 CHAPTER 2. STATE OF THE ART

(e.g., Content Assist in Eclipse, IntelliSense in Microsoft Visual Studio) they
all have similar functionality: Proposing valid code (e.g., class members) using
meta data (syntax tree), reflection or heuristics based on the current context.

Microsoft IntelliSense

Microsoft®IntelliSense is the code completion facility of Microsoft Visual
Studio®. Tt uses .NET reflection and the introspection facilities of COM to
establish a database of symbols and scopes, which is consulted when the user
enters code in the editor. Syntactically suitable symbols (class names, method
names, field names, variable names, etc.) are then presented in a drop-down
box and help to find elements available in the scope of the context.

Eclipse Content Assist

Similar to Microsoft’s code completion implementation, the Eclipse JDT
(Java Development Tools) provide a facility called Content Assist [ALO4].
Content Assist takes the guesswork out of coding by helping the program-
mer to

e find a given type
e find a given field or method of an object

e enter method parameter values

Additionally, Eclipse provides contextual information about the current
file in the so-called Qutline view.

Productivity Tools

For Microsoft Visual Studio there exist many third-party add-ins which en-
hance the capabilities of the built-in IntelliSense by providing a richer set of
heuristics to find the elements that may be needed in a specific context. As
an example, JetBrains ReSharper (http://www.jetbrains.com/resharper) pro-
vides advanced code completion which proposes symbols that, for example,
meet the expected type of an assignment.

http://www.jetbrains.com/resharper

2.2. FORMAL METHODS 9

Shortcomings

All the productivity tools mentioned above provide code completion and
code proposals based on the local, syntactic context of the editing position
in the code. This context is searched for information about the static program
structure consisting of variables and member declarations.

While this locality makes the approaches applicable to a wide variety of
scenarios, they fail to take into account state information (semantic informa-
tion) and information about component behavior. For example, after typing
a variable name and a dot the tools infer the type of the variable and suggest
all methods that can be applied to this variable. However, they fail taking
into account whether a suggested method call would be semantically correct
at the current position, i.e., whether the call would be legal in the sequence
of method calls that is defined by the contract of the variable’s type.

2.2 Formal Methods

The term formal methods describes techniques for the specification, synthesis
and verification of hardware and software systems. Figure 2.1 shows a big
picture of formal methods:

Formal Specification. Formal specification languages abstractly describe
what an implementation should do. These descriptions (models) con-
tain information about the states of a system and the operations
which cause the system to make transitions to other states. Well-
known specification languages are abstract state machines (ASM)
[GKOTO00], the vienna development method specification language
(VDM-SL) [ISO96al, the Z notation [ASMS80], and temporal logics
(see Section 2.2.2).

Formal Synthesis. Formal synthesis is the translation of a specification
into a more concrete implementation (see Figure 2.2). This step is also
referred to as refinement or transformation. If all translation steps can
be proven to be correct, an actual implementation can be generated
which is correct by construction (i.e. it is correct with respect to the
specification).

10 CHAPTER 2. STATE OF THE ART

Formal Verification. Formal verification uses mathematical techniques to
ensure that a system conforms to some precisely expressed notion of
functional correctness (specification) [Bje05].

Section 2.2.1 will detail on model checking, while Section 2.2.2 introduces
formal specification languages. Propositional satisfiability and tools for solv-
ing satisfiability problems are presented in Section 2.2.3.

2.2.1 Model Checking

Model checking is an automatic technique for verifying finite state concurrent
systems [CGP99]. It is a formal verification method which verifies a certain
property of a system by exploring all reachable states of the system. The
advantages of model checking over other verification approaches are that
it can be applied fully automatically, and if a state has been found where
the property is violated, model checking generates a counterexample, i.e.,
a sequence of transitions that leads the system into the faulty state. This
counterexample can then be used to locate the actual fault of the system.

There are two special types of properties that are of interest in model

checking:
Formal Specification
UML
Synchro
Langugges
Compfiler
Equivalence
Formal Checking Formal
Synthesis Verification

Figure 2.1: Overview over formal methods [Bie(8|.

2.2. FORMAL METHODS 11

Specification

Verification Synthesis

Implementation

Figure 2.2: Verification and Synthesis.

Safety. Safety properties assert that nothing bad happens. For example: "As
long as the service door is open, the machine must not start”.

Liveness. Liveness properties assert that some progress eventually happens.
For example: "The traffic light eventually turns green”.

Model checking tools use these properties encoded in some specification
language (see Section 2.2.2) to verify the system. Since model checking tools
traverse all reachable states of a system, these states need to be represented
in memory. The main problem of model checking is, that large systems often
consist of much more states than can be represented in memory. This main
problem is therefore called the state explosion problem. Many approaches
exist to overcome this problem:

Symbolic Model Checking [McM92]. Symbolic model checking avoids
building a complete state graph by using formulas to represent sets of
states.

Partial Order Reduction [CGP99]. Partial order reduction reduces the
size of the state graph by partially expanding local states in a syn-
chronous composition of components.

Compositional Model Checking [BCC98]. Compositional or modular
model checking partitions a system into a set of components communi-
cating over simple interfaces. Instead of checking the parallel composi-
tion of all components, each component is checked separately, assuming
certain behavior of the other components. The validity of these assump-
tions is later verified when the respective component is checked.

12 CHAPTER 2. STATE OF THE ART

Predicate Abstraction [Das03]. Instead of checking a large system, an
abstract model of the system is created. This abstract model does not
reflect all properties of the original system, while it still contains enough
information to verify the desired correctness properties.

While all of these techniques aim at making model checking feasible, very
few tools provide feedback about the checking process other than providing a
counterexample trace or reusing the counterexample to further detail the ab-
straction (counterexample guided abstraction refinement, CEGAR [CL00]).

Tools

Model checking tools (model checkers) exist for various application areas and
various programming languages. The following list shows three prominent
model checkers, all based on different languages.

SPIN. SPIN (Simple Promela Interpreter) [Hol03] is a model checker de-
veloped by Gerard J. Holzmann and can be used to check verification
models specified in Promela, a verification modeling language aimed at
modeling the behavior of concurrently executing processes’.

BLAST. BLAST [BHJMO7], [HIMS03]| is a model checking tool for C pro-
grams and allows checking safety properties on an automatically gen-
erated abstract model of the program?.

Java Pathfinder. Java Pathfinder [VHO00|, formerly based on the SPIN
model checker, is now an independent model checking tool based on
its own Java Virtual Machine. It can be used to search for deadlocks,
uncaught exceptions (for example, due to failed assertions), or even
custom properties that can be specified in a Java class®.

2.2.2 Formal Specifications

This section introduces formal specification languages which are commonly
used to express safety and liveness properties. These properties are then

Lhttp:/ /www.spinroot.com
2http://mtc.epfl.ch/software-tools/blast
3http://javapathfinder.sourceforge.net

http://www.spinroot.com
http://mtc.epfl.ch/software-tools/blast
http://javapathfinder.sourceforge.net

2.2. FORMAL METHODS 13

Figure 2.3: CTL* and its subsets CTL and LTL.

verified using a model checker.

Temporal Logics

Temporal logics represent propositions specifying properties of state transi-
tion systems. These properties are described in terms of sequences of transi-
tions in the transition system using so-called temporal operators expressing
properties like finally or never.

Computation Tree Logic* (CTL¥*) is a superset of two widely used tem-
poral logics: branching-time logic (CTL) and linear-time logic (LTL). We
first describe the general properties of CTL* and then detail on the two
subset languages. The relation between CTL*, CTL, and LTL is outlined in
Figure 2.3.

CTL* [CGP99] formulas consist of atomic proposition symbols and the
usual logic operators —, A, V. These basic formulas are called state formulas
and can be used in combination with the following temporal operators to
describe properties of (infinite) paths in the computation tree.

e X. The subsequent formula holds at the following state (next).

e F. The subsequent formula holds at some state on the path in the
computation tree (finally).

e G. The subsequent formula holds at all states on the path in the com-
putation tree (globally).

14 CHAPTER 2. STATE OF THE ART

e U binary operator: p1 Up2 means that there must exist a state at which
p2 holds and p1 must hold (until) on all states between the current state
and that state.

e R binary operator: pl R p2 means that pl holds up to the state where
p2 holds (such a state does not need to exist) (release).

In addition, path quantifiers can be used to specify the scope of the
(sub)formula. These quantifiers are A (all) and E (exists), meaning "for all
computation paths" and "for some computation paths". Formulas are eval-
uated on a transition system starting at a specified state (usually the initial
state) [CGP99).

Interface Automata

Interface automata [dAHO1,dAHO5| are a regular language to describe the
order in which methods of a component can be called. Interface automata
therefore describe in which order a component assumes that its methods
are called and in which order methods of external components are called.
Compatibility of two interface automata can be computed by finding an en-
vironment in which no error state is reachable (optimistic approach). The
environment is defined as a sequence of external signals, e.g., a communica-
tion channel which may fail to transmit a message, whose behavior can not
be guaranteed by some contract. A pessimistic approach would regard two
interface automata incompatible as soon as a single environment was found
in which an error state is reachable.

Contracts

Contracts introduced by Bertrand Meyer [Mey86| describe the mutual as-
sumptions and guarantees between two components. Assumptions are ex-
pressed as preconditions, guarantees as postconditions. In addition, a con-
tract also describes invariants that must hold at all times. Bertrand Meyer’s
idea is to incorporate these elements in the design process by stating the
contract before coding the implementation (design by contract).

Design by contract is natively supported by some programming languages,
like Eiffel [Mey92], D [Bri09], or Specf [BLR*04]. For other, more common

2.3. BELIEF REVISION AND BELIEF UPDATE 15

languages, libraries and third-party tools exist, which mimic the functionality
of preconditions and postconditions.

2.2.3 Satisfiability

Satisfiability (SAT) of Boolean properties is the decision problem of finding
variable assignments that make a Boolean property true. If such an assign-
ment can be found for all variables, the property is said to be satisfiable,
otherwise it is unsatisfiable. If a formula is unsatisfiable, it is called a con-
tradiction, since no assignment of truth values to its variables can make the
whole formula become true.

Current SAT solvers (tools for solving satisfiability problems) are mostly
SMT solvers (satisfiability modulo theories) supplying special theories like
the theory of integers, real numbers, arrays, or bit vectors. Some of the well-
known solvers are Boolector [BBLO0S], MathSAT [BCF*08|, Yices [DAMO06],
or Z3 [dMBOS].

Most SAT solvers are based on variations of the DPLL algorithm (Davis-
Putnam-Logemann-Loveland) [DP60] assigning truth values to unassigned
variables, propagating implications on other variables, and then either assign
truth values to other variables or backtrack in case of conflicts. Additionally,
heuristics can be applied to choose those variables as assignment candidates
which lead to a satisfying assignment most quickly.

2.3 Belief Revision and Belief Update

The terms belief revision and belief update can be found in disciplines like
philosophy, artificial intelligence, or databases. In a nutshell, belief revision
and belief update are two strategies for adding conflicting information to a
knowledge base. Depending on the reason for the belief change, the one or
the other belief change strategy is the better choice. This section will only
consider the AT view on belief change.

16 CHAPTER 2. STATE OF THE ART

2.3.1 Definitions

The following definitions give basic understanding about knowledge bases
and belief change operators.

Definition 2.1 A knowledge base (belief base) is a finite set of formulas
consisting of a finite set of atoms (ATM = p,q,r,...) and the usual logic op-
erators =, N\, V, as well as the symbols T and L for true and false. Knowledge
bases are equal to the conjunction of their elements.

Definition 2.2 A knowledge base K is consistent if it is satisfiable.

Definition 2.3 A belief change is an operation x mapping a current know-
ledge base K and new information N, a set of formulas, to a new knowledge
base K x N.

A belief change adds new information to an existing knowledge base while
keeping the knowledge base consistent. If new information added to the know-
ledge base would make the resulting knowledge base inconsistent, some of the
old information needs to be removed from the knowledge base. Belief revision
and belief update are two strategies differing in how contradicting knowledge
is treated.

2.3.2 Belief Revision

Belief revision (o) is the type of modification used when the change of the
knowledge base is due to new information about a static world. The change
of the knowledge base is therefore due to updated information on an un-
changed state of the world. Alchourron, Gardenfors, and Makinson [AGMS85|
proposed 8 postulates (known as the AGM postulates) that every adequate
revision operator should satisfy. These 8 postulates have been reformulated
by Katsuno and Mendelzon to the following 6 revision postulates:

(R1) (KoN) = N. The result of the revision contains the new information.
New information has higher priority than old information.

2.3. BELIEF REVISION AND BELIEF UPDATE 17

(R2) If K A N is consistent, then K o N = K A N. If possible, the revision
uses conjunction to add new information.

(R3) If N is satisfiable then K o N is satisfiable. Therefore, revision always
establishes a consistent knowledge base, even if the original knowledge
base was inconsistent, unless N is inconsistent by itself.

(R4) If (K1 & Ky) A (N7 & N,) then (K 0 Np) < (K30 Ny). The revision
operator should be invariant to the syntactic form of the new infor-
mation, thus logically equivalent information results in the same new
knowledge base.

(R5) (K oNj)ANy= Ko(N;ANy). A revision by Ny A Ny is weaker than
just adding N, to the knowledge base updated by Nj.

(R6) If (K o Ni) A N, is satisfiable then K o (N; A Ny) = (K o Ny) A No.

(R5) and (R6) describe the rule, that the revision operator should be
applied with minimal change [KM89).

2.3.3 Belief Update

Belief update (¢) is the type of modification used when the change of the
knowledge base is due to new information based on changes in an evolving
world. The change of the knowledge base is therefore due to updated informa-
tion on a world that has changed since the knowledge base was established.
Similar to the AGM postulates, Katsuno and Mendelzon defined 8 postulates
for update operators (KM postulates) [KMI1].

(U1l) (Ko N) = N. The result of the update contains the new information.
New information has higher priority than old information (as R1).

(U2) If K = N then (K ¢ N) < K. Nothing needs to be changed, if the
new information is already present in the knowledge base.

(U3) If N is satisfiable and K is satisfiable then K ¢ N is also satisfiable.
Therefore, update only has to establish a consistent knowledge base, if
the original knowledge base and the new information were consistent.

18 CHAPTER 2. STATE OF THE ART

(U4) If K1 & Ky AN Ny & N, then K; o N; & K5 ¢ Ns. The update oper-
ator should be invariant to the syntactic form of the new information,
thus logically equivalent information results in the same new knowledge
base.

(U5) (Ko Nj)ANy= Ko (NyAN,y). An update by Ny A Nj is weaker than
just adding Ny to the updated by V.

(U6) IfKONl = N, and KoNy,= N, then Ko N < Ko Ns. IfN1 and
Ny are equivalent under K, then they result in the same update.

(U7) If K is complete then ((K o Ni) A (K o Ny)) = K o (N; V Ny). A
knowledge base is complete, if it has a truth value for every symbol. This

postulate is almost meaningless since knowledge bases are in general
incomplete [HR99).

(U8) (K1 V Ky)oN < (KyoN)V (Ko N). Updating the two alterna-
tive knowledge bases is equivalent to updating their disjunction. This
postulate describes the idea of modelwise updating.

Different proposals for concrete update operations have been made. Most,
of the proposed operators do not fulfill all of the postulates [HR99]. Only
few operators satisfy all 8 KM postulates. Therefore these postulates are
discussed controversially and Herzig and Rifi [HR99| have another set of
postulates deducted from the 8 KM postulates including integrity con-
straints [Win90, HR99| (formulas that must be guaranteed to hold after
every update).

2.3.4 Winslett’s Standard Semantics

Winslett’s standard semantics [Win90| defines an update operator fulfilling
only some of the KM postulates for update operators: (U1), (U3), (U7), and
(U8). Postulate (U2) is not satisfied, because the knowledge base may be
altered, even if K = N. We denote the update operator defined by Winslett
as owss. In a nutshell, the operator replaces existing information on a symbol
with new information about the symbol, and adds information about symbols
not stated so far. Consider powss (p V ¢) = p V q. This operation obviously
does not satisfy (U2), since p = (p V ¢) but (p V q¢) = p does not hold.

2.3. BELIEF REVISION AND BELIEF UPDATE 19

Similarly, a counterexample for (U4) can be found: consider a knowledge
base p and updates ¢ A (pV —p) and ¢. The update results in g A (pV —p) and
p A q. Obviously, the results are not equal. This shortcoming can be easily
overcome by eliminating redundant atoms.

2.3.5 Example

The following example is taken from [KM91].

Consider a room with two objects in it, a book and a magazine. Suppose
b means the book is on the floor, and m means the magazine is on the floor.
Then, K = {bV m} states that the book or the magazine is on the floor,
but not both (V stands for xor). Now we order a robot to put the book on
the floor. The result of this action should be represented by the update of K
with N = {b}.

If we apply revision, the result of KoN is KAN, that is (bVm)Ab = bA—m.
But why should we conclude that the magazine is not on the floor? If we
apply update, the result of K ¢ N is b, that is we do not know anything about
m any more, which is exactly what we would expect. The difference of the
two operators is therefore, that revision assumes that the new information is
additional knowledge about an unchanged world, while update assumes that
the new information is due to a change of the real world.

2.3.6 The Frame Problem

The frame problem deals with the uncertainty involved in changing parts of
a world without explicitly stating which parts of the world do not change.
There are different solutions to the problem from which we will only describe
the one used in our implementation of the belief update.

The default logic solution solves the frame problem by assuming that a
property not stated in the change action did not change. Thus, exactly the
stated properties change and all other properties (not conflicting with the
changed properties) remain unchanged.

20 CHAPTER 2. STATE OF THE ART

2.3.7 Open vs. Closed World Assumption

Similar to the assumption about unstated changes to properties, we also need
assumptions about how to handle properties that are not known to be true
or false. Assume that we have a knowledge base consisting of the information
aNb. If we want to deduce b A ¢ from this knowledge base, we need to decide
whether to return true, false or unknown.

Closed World Assumption

The closed world assumption presumes a complete knowledge base that con-
tains every piece of valid knowledge. Therefore, every statement that cannot
be deducted from this knowledge base must be false.

Open World Assumption

In contrast to the closed world assumption, the open world assumption as-
sumes an incomplete knowledge base from which a non-inferable statement
might either be due to the statement being false, or due to a missing state-
ment. Thus, every statement that can not be deducted is said to be unknown
(either false or missing).

Chapter 3

MONACO

]
The most important decision

in language design concerns
what is to be left out.”

- Niklaus Wirth

The context of this thesis is the domain-specific language MONACO,
a language for programming automation machines. First, the design goals
of MONACO are outlined (Section 3.1). Section 3.2 and 3.3 introduce the
language constructs, while Section 3.4 presents the runtime semantics of
MONACO. Section 3.5 concludes with an example application. More details
of MONACO are given in [PHST08b)].

MONACO (MOdeling Notation for Automation COntrol) is a domain-
specific language (DSL) for programming event-based, reactive automation
solutions. The main purpose of the language is to bring automation pro-
gramming closer to domain experts and end users. Important design goals
therefore have been to keep the language simple and to allow writing pro-
grams which are close to the perception of domain experts. The language
MONACO is similar to StateCharts [Har87| in its expressive power, however,
adopts an imperative notation. Moreover, MONACO adopts a state-of-the-art
component approach with interfaces and polymorphic implementations and
enforces strict hierarchical component architectures to support the hierarchi-
cal abstraction of control tasks. After discussing design goals, the language
elements of MONACO are presented.

21

22 CHAPTER 3. MONACO

3.1 Design Goals

The language MONACO is designed with the goal that not only software
engineers but also domain experts and, in a limited way, end users are ca-
pable of reading, writing, understanding, and adapting control programs.
MONACO is specialized to a rather narrow sub-area of the automation do-
main, i.e., programming control sequence operations for manufacturing ma-
chines. The lower level continuous control layers and higher manufacturing
execution system (MES) layers are therefore out of scope. It is intended to
cover the event-based, reactive control part of machine automation software
only. Therefore, a continuous control system, typically realized in languages
of the IEC 61131-3 [IEC03] standard or plain C, will form a lower layer which
will be controlled, scheduled, and coordinated by the higher reactive layer
implemented in MONACO.

The language MONACO has been designed based on a domain analysis
which showed how domain experts and end users perceive automation solu-
tions:

e A domain expert perceives a machine as being assembled from a set of
independent components working together in a coordinated fashion.

e Each component normally undergoes a determined sequence of control
operations. There are usually very few sequences which are considered
to be the normal mode of operation, and those are usually quite simple.
Complexity is introduced by the fact that those normal control cycles
can be interrupted anytime by the occurrence of abnormal events, er-
rors, and malfunctions.

e The control sequences of the various machine components are coordi-
nated at a higher level.

Additionally, we have identified the following requirements for a DSL and
tools in the target domain:

e The language should be simple. It should contain a minimal set of lan-
guage constructs and those should be intuitive and easy to understand.

3.1.

DESIGN GOALS 23

e Domain experts and also end users usually have some programming
experience in languages like Pascal or Basic. A syntax that is similar
to one of those languages is therefore preferred.

e Reliability is more important than flexibility and expressiveness. Pro-
grams written by domain experts and end users are usually quite sim-
ple. Furthermore, end users change and adapt existing programs in a
rather restricted way. However, the effect of programming mistakes can
be severe.

e Reactive behavior is intrinsically complex. Especially, realizing asyn-
chronous event and exception handling in a concise way represents a
challenge.

e Programs must be runtime efficient and must usually satisfy real-time
constraints.

The design of MONACO is based on the following ideas:

e Although the behavioral model of the language is very close to State-
Charts, an imperative style of programming is used. The language
adopts proven concepts from imperative languages such as procedural
abstraction, synchronous procedure calls, parameters, block structure,
lexical scoping, and a Pascal-like syntax.

e The main focus of the language is on event handling. Statements have
been introduced to express reaction to asynchronous events, parallelism
and synchronization, exception handling and timeouts in a concise way.
However, asynchronous event handling is clearly separated from normal
operation sequences to avoid mingling the normal code with exception
handling code.

e Monaco pursues a component-based approach with strict modulariza-
tion which allows a direct mapping of the machine structure to the
software structure.

e [n contrast to many other component-based approaches in this domain,
MONACO pursues strict hierarchical control architectures of subordi-
nate and superordinate components. A component relies only on the

24 CHAPTER 3. MONACO

operations, state properties, and events from its subordinate compo-
nents. It composes and coordinates the behavior of its subordinates
and provides abstract and simplified views to its superordinate compo-
nent. Thus, complex components can be built by composing existing
components instead of directly controlling signals of a machine.

e The assembly of MONACO components to MONACO programs is done in
a separate configuration phase (setup) prior to execution. That means
the entire system is statically configured, i.e., all components, compo-
nent parameters and the component hierarchy are fixed and can not
change while the program is running. This static nature of MONACO
programs is an important property which makes, for example, code
optimization or static program analysis feasible.

In the following, the main language elements are presented.

3.2 Component Approach

3.2.1 Interface Declarations

Interface declarations (Figure 3.1) are used for defining the static contract be-
tween components and their clients and hence have a similar purpose as inter-
faces in modern object-oriented languages. However, interfaces in MONACO
account for the hierarchical communication architecture of control programs.
On the one hand, an interface defines the externally visible operations of a
component in the form of routine declarations. Those represent the opera-
tions a superordinate will be able to call. On the other hand, an interface
defines how a component will provide feedback about the fulfillment of its
control tasks. This is done by specifying events it will signal and functions it
provides for accessing runtime state (properties) of the component. In other
words, the routines define tasks a component can perform and the events and
functions define feedback the component will provide.

3.2. COMPONENT APPROACH 25

<<INTERFACE>>
IType
<<EVENT>>
event, ...
INTERFACE IType
EVENTS event, ..; <<FUNCTION>>
FUNCTION func(..):RetType; func(...) : RetType
ROUTINE rout(..); <<ROUTINE>>
rout(...)
END IType
(a) Monaco (b) UML

Figure 3.1: Interface declaration in MONACO (left) and UML (right).

T IType

CompType
COMPONENT CompType IMPLEMENTS IType
PARAMETERS <<PARAMETERS>>
param : PType := default; param: PType = default;
SUBCOMPONENTS
subCompl : ITypel; <<EVENTS>>
subComp2 : IType2; event, ...;
<<VARS>>
Evgclit, var : VType;
VARS
var @ Viype; <<FUNCTION>>
FUNCTION func(...):RetType func() : RetType
BEGIN ... END
ROUTINE rout(...) «FEOUT'NE»
BEGIN ... END rout(
END CompType /KsubComm EbCompZ
ITypet IType2
(a) MONACO) UML

Figure 3.2: Component declaration in MONACO (left) and UML (right).

3.2.2 Component Implementations

Interfaces are implemented by components (Figure 3.2), i.e., components have
to implement the routines, functions, and events defined in the interfaces. A
component has parameters and internal state variables. A parameter is a
runtime constant used to configure a component instance at setup time. A
variable, however, is used to hold runtime state properties of a component.

26 CHAPTER 3. MONACO

Components usually rely on subcomponents to fulfill their control tasks.
A component therefore declares subcomponent variables which can hold ref-
erences to subcomponent instances. Interface types are used in the subcom-
ponent variable declarations. The subcomponent declaration represents the
required interfaces of the component (Figure 3.2). Subcomponents are poly-
morphic, i.e. any component implementing (providing) the required interface
can be used. The actual subcomponent instance is plugged into the subcom-
ponent slot at setup time (see below).

There are no access modifiers in MONACO. Only elements defined in the
implemented interfaces of the component are externally visible.

Components implement functions, events and routines. A function imple-
mentation in a component is similar to functions in procedural programming
languages, e.g., Pascal. They return runtime state properties of components.
In MONACO, functions have no side effects, i.e., they are not allowed to set
global variables, call routines, raise events, or to recurse. Usually functions
are used to compute important state properties and forward those in a more
abstract, concentrated form to the superior component.

Routines are used to implement control algorithms and therefore con-
stitute the central programming elements of components. Routines will be
discussed in detail in Section 3.3.

3.2.3 Static Configuration

In order to create a complete MONACO program, MONACO components have
to be instantiated and the component /subcomponent relation needs to be es-
tablished (Figure 3.3). Furthermore, component parameters have to be set
if the desired values differ from the defined default values. This static con-
figuration of the system is established in a setup phase prior to program
execution. The configuration cannot be changed during the execution of the
MONACO program.

3.3. REACTIVE SYSTEM PROGRAMMING 27

SETUP

VARS IType
comp : CompType;
compl: CompTypel; .
comp2: CompType2; comp:CompType

param = value

BEGIN
comp.param := value; Kz >\

comp.subCompl := compl; ?IT}’PW IType2
comp.subComp2 := comp2;
. comp1: comp2:
END SETUP CompType1 CompType?2
(a) MONACO (b) UML

Figure 3.3: Subcomponent relation in MONACO (left) and UML (right).

3.3 Reactive System Programming

3.3.1 Control Routines

Routines are used to implement control algorithms of components. Routines
are defined similar to procedures in imperative languages. They can have pa-
rameters, local variables and a body with a statement sequence. Well-known
language constructs from structured programming languages like block struc-
ture, lexical scoping, loops, if statements etc. are used. Additionally, special
programming constructs for parallel tasks and event handling with seman-
tics similar to StateCharts are provided. Neither direct recursion, nor mutual
recursion of routines is allowed.

Routines can be declared ATOM C which means that their execution can-
not be interrupted by event handlers and that they are executed atomically
when used in a parallel branch. In fact, these routines may not make use
of any reactive statements (such as conditional waits, parallel execution, or
event handlers), but may, for example, only set a variable or call another
atomic routine. Non-atomic routines may use the reactive statements as pre-
sented in Sections 3.3.3-3.3.6.

28 CHAPTER 3. MONACO

/action1
WAIT for condition
actionl; [condition]/action2
WAIT condition;
action2;
(a) MONACO (b) StateCharts

Figure 3.4: WAI T statement in MONACO (a) and StateCharts (b).

3.3.2 Imperative Statements

MONACO comes with imperative statements like | F and VWHI LE used within
routines to affect the control flow. Their semantics is in accordance with
common programming languages.

The | F statement is used to conditionally execute a code block. The
condition can be any Boolean expression. If the condition is not true, the
ELSE branch of the | F statement is executed.

Similarly the WHI LE statement can be used to declare a conditional repe-
tition of a code block. The head of the WHI LE statement contains a condition.
As long as this condition is true, the block of the statement is executed.

3.3.3 Conditional WAIT

The WAI T statement suspends the execution of the current execution thread
until a specified condition is satisfied. Any Boolean expression as well as
events can be used as a condition. Thus, x>0, evt Cl osed. FI RED, and
TI MEOQUT(1000) are all valid conditions. The latter expression returns true,
as soon as the specified time in milliseconds has passed since the statement,
was reached.

Compared to StateCharts, a WAl T corresponds to a state node with the
condition as the triggering event (Figure 3.4).

3.3. REACTIVE SYSTEM PROGRAMMING 29

WAIT for
BEGIN cond1
actionl; . [cond3)/
WAIT condl; [cond1]/action2 action2
action2; .
WAIT cond2; WAIT for
ON copd3 cond2
??Flong’ [cond2]/...
END
action4; :
action4
(a) MONACO (b) StateCharts

Figure 3.5: ON handler in MONACO (a) and StateCharts (b).

3.3.4 Asynchronous Event Handling

ON handlers are used to handle events which can occur asynchronously to nor-
mal, sequential program execution. They are similar to exceptions in general-
purpose programming languages. ON handlers specify a condition (see valid
conditions in a WAI T statement above) and are attached to BEG N/END
blocks (Figure 3.5). Their meaning is that, whenever the condition of the
ON handler becomes true while program execution is within the BEG N/END
block or within a routine called in this block, the block is left and the state-
ment sequence of the ON handler is executed. For ON handlers to be mean-
ingful, the guarded BEG N/END block has to have blocking statements, i.e.,
WAI T statements, where program execution gets suspended and the asyn-
chronous event handling can occur.

If ON handlers are nested, the dynamically innermost ON handler has
precedence over outer ON handlers. ON handlers have interruptive behavior,
therefore program execution continues immediately after the handler.

ON handlers show similarities to try/catch constructs in Java, however,
they are much more general. While in Java an exception must be thrown

30 CHAPTER 3. MONACO

BEGIN
actionl;
WAIT condl;

ON cond2 @é_,
action2; g

[cond 2}/
action2

PEEY \ J
RESUME ;)

END J/actlonS

action3;

(a) MoONACO (b) StateCharts

Figure 3.6: RESUME statement in MONACO (a) and StateCharts (b).

explicitly and then can be caught in catch clauses, ON handlers are triggered
by arbitrary Boolean conditions becoming true.

ON handlers in MONACO are analogous to OR states and their transi-
tions in StateCharts. Figure 3.5 shows the relationship. The OR state groups
the states, e.g., the blocking WAI T statements, and transitions within the
BEG N/END block. The transition leaving the OR state is labeled with the
condition of the ON handler. An ON handler can consist of an arbitrary se-
quence of statements.

The interruptive behavior of an ON handler is the default. However, the
RESUME statement can be used to resume execution of the block after the
handler code has been executed. The execution of the block is resumed ex-
actly where it was interrupted, even if it was interrupted within a routine
call. The RESUME statement therefore has the same semantics as the deep
history node in StateCharts (Figure 3.6). Currently, there is no statement
equivalent to the normal history node in MONACO.

3.3.5 Parallel Execution Threads

The PARALLEL statement is used for creating multiple concurrent execution
threads. Each parallel execution thread consists of a statement or a statement
block. As soon as all parallel execution threads have terminated, program ex-

3.4. EXECUTION SEMANTICS 31

N

action 1 action 2

WAIT for
cond1

WAIT for
cond2

PARALLEL
actioni;
WAIT condl;

[

action2;
WAIT cond2;

END g
-

(a) MoNACO (b) StateCharts

Figure 3.7: PARALLEL statement in MONACO (a) and StateCharts (b).

ecution continues after the PARALLEL statement. The PARALLEL statement
has the semantics of the AND state in StateCharts, see Figure 3.7.

3.3.6 Event Signals

Although MONACO allows using arbitrary Boolean conditions as event trig-
gers, event signals are provided. Those are similar to the event triggers in
StateCharts or the signal concept in Esterel [BC85|.

An event is declared as event variable in interfaces and components with
the EVENTS keyword (see interfaces and components above). In routine bod-
ies events can be fired using the FI RE statement. The event variable can then
be used like any other Boolean variable in WAl T and ON handlers (Figure 3.8).
In contrast to normal Boolean variables, a fired event is true for one logical
time step and reset automatically in the next time step. See next section for
execution details.

3.4 Execution Semantics

MONACO’s execution semantics is based on the following concepts: syn-
chronous routine calls, cooperative multitasking, fair thread scheduling, and

32 CHAPTER 3. MONACO

WAIT condition

condition]/ *event

WAIT condition;
FIRE event;

(a) MoNaAco (b) StateCharts

WAIT for event

WAIT event AND cond;
action;

(c) MonaAco (d) StateCharts

WAIT for
[cond1] event

event [cond] /action

BEGIN [cond1] /action
WAIT condl; /Mevent
. WAIT for
FIRE event; cond?
WAIT cond2; [cond2]
END
(e) MoNACO (f) StateCharts

Figure 3.8: Usage of event signals with equivalent StateChart models.

event broadcast. In the following we will discuss those issues in more detail.

3.4.1 Synchronous Routine Calls

Routines are called synchronously, i.e., the caller waits until the routine ter-
minates. This is an important difference to many component approaches in
the real-time domain, e.g., UML/RT, where interaction between components
happens by event signals only. We have experienced, that synchronous call
semantics together with the hierarchical communication architecture lead to
control programs which are easier to comprehend by domain experts and end
users (see example in Section 3.5).

3.4.2 Cooperative Multitasking With Fairness

MONACO employs a cooperative multitasking scheme with fairness. There are
well-defined scheduling points in a program where threads can get suspended
and other threads get the chance to proceed. Scheduling points are WAI T

3.4. EXECUTION SEMANTICS 33

e \ passivate
start active

. passive
condition running

" | activate
waiting suspend @
_/ terminate ®

Figure 3.9: Thread state diagram (simplified).

statements, points before and after a PARALLEL statement, and at routine
returns. Between those points program execution is treated as atomic and
cannot be interrupted. Therefore, program execution is analogous to the run-
to-completion semantics of StateCharts [Har87|.

Threads are created in MONACO by the PARALLEL statement and ON
handlers. A PARALLEL statement creates a thread for each branch which is
ready for execution. The main branch is then suspended until all branches are
terminated. Similarly, an ON handler creates a thread which is waiting for its
condition. ON handler threads are terminated when execution of the guarded
block has finished, regardless of whether the handler thread was executed.

A fixed precedence order is used to arbitrate between competing parallel
threads. Currently, the order is determined based on order in which the par-
allel branches appear in the source code. Furthermore, ON handlers always
have precedence over their main thread and, in case of nested active han-
dlers, the innermost handler in terms of the dynamic nesting is preferred.
This approach is simple and deterministic and we have experienced that it
serves our objectives. For more details on the execution semantics refer to
Section 5.2 and [PHST08b].

Figure 3.9 shows state transitions of threads. Initially, each thread is in
the ready state. This means it is not waiting for any condition and is therefore
ready to run. When the scheduler starts a thread, it transits to the running
state. It remains running until it reaches a scheduling point; it changes into
the waiting state again. The thread becomes ready again, as soon as its
condition (from WAI T statement or ON handler) becomes true.

When a thread reaches a parallel statement, it is passivated. This means
it can not run until it is activated again. The thread is activated again when
all branch threads are terminated.

34 CHAPTER 3. MONACO

The cooperative scheduler uses a fair thread scheduling algorithm based
on logical time steps. Once started by a fulfilled WAI T condition, a thread
only runs to the next scheduling point. At this point another thread in the
ready state gets the chance to run. When all threads in the ready state have
run to their next scheduling point, the logical time step is over. Therefore,
when a thread is running once in a logical time step, it can not get started
again in the same logical time step. This mechanism prevents starvation of
parallel threads. It ensures that each parallel thread that is ready has a
chance to run before another thread is started a second time.

3.4.3 Event Broadcast

Events are broadcast within their dynamic scope. The dynamic scope of
the event is the component in which the event is declared, as well as in
components using this component (only if the event is also declared in the
component’s interface).

Events are active for one logical time step only. That means when several
WAI T statements and ON handlers are concurrently waiting for an event,
they get started based on the scheduling scheme as outlined above. Moreover,
events are always propagated from the innermost block outward. When an
inner ON handler handles the event, further surrounding ON handlers will not
receive it. Note, that this behavior only applies to events since events are
deactivated once they are handled. If, however, two nested ON handlers both
wait for a Boolean condition, the outer handler may be activated after the
inner handler was activated, if the condition is still true.

3.5 Example Control Program

This section demonstrates programming in MONACO with a sample appli-
cation. It shows how language constructs presented in this chapter are em-
ployed in realizing a component-based, hierarchical control program. First,
we briefly describe the physical process of injection molding. Next, we show
the decomposition of the machine into a hierarchy of components, and then
show the hierarchical abstraction of control functionality by components at
different hierarchy levels.

3.5. EXAMPLE CONTROL PROGRAM 35

3.5.1 Example System

For validation of concepts, we have developed several example applications
in MONACO. One has been a reimplementation of an existing control pro-
gram for an injection molding machine, which was originally implemented
in the IEC 61131-3 [IEC03] standard languages. We have implemented the
event-based part of the application in MONACO and have coupled it with a
simulator for testing purposes. The MONACO program has led to a drastic
reduction in code size to less than one fifth of the original code, and, at the
same time, to a significant improvement in code clarity. Special emphasis
has been put on handling errors and malfunctions of the machine. It has
been shown that the MONACO language is capable of describing machine
failure handling in a compact and concise way. In the following we show code
fragments of a simplified version of the example software system.

Our example deals with injection molding machines. These machines are
used to produce plastic parts by injecting heated, semi-fluid plastic into a
mold where the plastic cools down and hardens within a short period. In order
to produce plastic parts with various notches and holes, it is necessary to have
an adaptable mold that inserts so-called cores into the molding chamber
during the injection process. After the plastic part is hardened, the cores are
removed, the part gets ejected, and the process starts over again. During the
cooling phase, new raw material (plastic pellets) is heated up for the next
injection phase.

Figure 3.10 shows the structure of the sample molding machine. There are
two main components in the machine: the mold subsystem with the clamp,
the ejector and a core puller; and the nozzle subsystem that is mounted
on a sledge with the material funnel, the heating system and the screw for
injection. Finally, the ejector serves the purpose of ejecting the finished parts
out of the mold.

3.5.2 Component Hierarchy

The component hierarchy of the control program resembles the structure of
the real machine (Figure 3.11). There is a direct mapping from the problem
structure to the solution structure. On top, the Machi ne component is re-
sponsible for encoding the overall control cycles. It knows different operation

36 CHAPTER 3. MONACO

) nozzle subsystem
clalmp ejelctor SC(eW he?ting

mold subsystem core puller sledge

Figure 3.10: Structure of the molding machine.

(P IMachine

:Machine

?lMijCtrl nﬁh IEjectorCtrl

:MoldCtrl :NozzleCtrl
:EjectorCtrl

& o m T

%CIampCtrl |CoreCtrl ISledgeCtrl IScrewCtrl HeatmgCtrI

:ClampCtrl :CoreCtrl SIedgeCt :ScrewCtrl :HeatingCtrl |IEjector

@CIamp %P\ICore Q ISledge @Screw %?IHeating

<<native>> |<<native>> <<native>>| |<<native>> <<native>> | | <<native>>
:Clamp :Core :Sledge :Screw :Heating :Ejector

Figure 3.11: Component hierarchy of the molding machine.

modes, e.g., full automatic or half automatic and relies on and coordinates
several subcomponents corresponding to the different machine subsystems.
The components for nozzle and mold are further decomposed according to
the different parts of the subsystems. At the bottom of the hierarchy there are
components for interfacing with lower level control layers or the hardware.
Those are usually implemented in the native language of the lower layers; in
this example program Java components build the interface to the simulator.

Components at different hierarchy levels typically serve different purposes

3.5. EXAMPLE CONTROL PROGRAM 37

as follows:

e Components at the bottom are used for interfacing with the hardware
or lower control layers. They usually set and read basic system vari-
ables. This layer is often referred to as hardware integration layer.

e Components at the first level compose primitive operations of the bot-
tom layer into elementary control routines and supervise their execu-
tion.

e Higher up in the hierarchy there are several coordination components
which coordinate and supervise the operations of several subcompo-
nents.

3.5.3 Control Components
Interface to hardware and continuous control layers

In the example program, the components forming the leaves of the compo-
nent hierarchy are native Java classes building the interface to a simulator
which simulates the real machine and the continuous control layer. Native
components implement a MONACO interface which represents the interface
for the components higher in the component hierarchy (there is direct map-
ping of routines, functions and events to equally named Java methods). The
following code snippet (Figure 3.12) shows the interface definition of the
core puller component | Cor e. The interface defines elementary routines to
set, system variables to start and stop insertion and removal of the core and
a function giving the current position of the core puller.

First level control components

The components residing in the hierarchy level directly above the native com-
ponents use those interfaces to compose elementary operations into basic task
routines. For example, the Cor eCt r| component has the native component
cor e as its single subcomponent. It defines two routines to insert and re-
move the core. Additionally, a stop routine is provided which immediately
stops all movements.

38 CHAPTER 3. MONACO

| NTERFACE | Cor e
FUNCTI ON position() : REAL;

ROUTI NE startlnsert();

ROUTI NE st opl nsert();

ROUTI NE st art Rermove() ;

ROUTI NE st opRenove();
END

Figure 3.12: Interface | Cor e.

COVPONENT CoreCtrl | MPLEMENTS | CoreCtrl

PARANMVETERS
corelMvenent StartedTi meout : | NT := 200;
corelnsertTimeout : | NT := 1400;

corel nsertedPos : REAL := 0. 6;
cor eRenovedPos : REAL := 0. 8;
SUBCOVPONENTS
core . |Core;
EVENTS error;

FUNCTI ON i sl nserted() : BOCL
BEG N

RETURN core. position() >= corel nsert Pos;
END i nserted

END CoreCtrl

Figure 3.13: Component CoreCtrl .

The following code snippet (Figure 3.13) shows part of the CoreCtr |
component. Besides showing declaration of parameters, subcomponents and
events, it also demonstrates how functions are employed for abstracting state
properties from lower level information of subcomponents.

Routines implement the basic control tasks. However, besides defining
the basic sequence of actions, routines also check for the correct execution of
control tasks and correct reactions from the subordinate. This can be done
using ON handlers.

The code snippet (Figure 3.14) demonstrates this approach with the

3.5. EXAMPLE CONTROL PROGRAM 39

ROUTI NE i nsert ()
BEG N
core.startlnsert();
BEG N
WAI'T NOT core.isRenoved();
ON TI MEQUT(cor eMbvenent St art edTi meout)
stop();
FIRE error;
RETURN,
END
BEG N
WAI'T core.islnserted();
core.stoplnsert();
ON core.isRenoved()
stop();
FIRE error;
RETURN,
ON TI MEQUT(cor el nsert Ti meout)
stop();
FIRE error;
RETURN,
END
END i nsert

Figure 3.14: Routine i nsert.

i nsert routine. First, start |l nsert is called for the subcomponent cor e
which will set a hardware signal and start the insertion process. Next, a re-
action from the | SRenoved signal is expected. If this sensor does not go
to false within a given (short) time period, a fault in the insertion process
or a faulty sensor has to be assumed; so the process is stopped and an error
event is fired. Next, the i nsert routine waits for the i sl nsert ed signal
to become true and then stops the insertion process. Again the process is su-
pervised by two ON handlers. The first handler checks that the i SRenoved
signal does not switch to true again (which might result from a faulty sensor).
The second handler checks that the reaction of the i sl nsert ed signal oc-
curs in time. In both error cases the process is stopped and the er r or event
is fired. Note, that this way, the i nsert routine is guaranteed to either run
correctly to its end or an error signal will occur.

40 CHAPTER 3. MONACO

The control behavior defined so far is provided in a more abstract way in
an interface declaration to the upper component. The following code snippet
(Figure 3.15) shows the interface | Cor eCtr | of the Cor eCt r | component.
There are routines for inserting, removing, and stopping the core, as well as
two Boolean functions telling if the core is inserted or removed. Additionally,
the er r or event appears in the interface which means that the upper com-
ponent will be able to check for the errors occurring during execution of the
control routines.

| NTERFACE | CoreCtrl
EVENTS error;
FUNCTI ON i sl nserted() : BOQ,;
FUNCTI ON i sRermoved() : BOCQL;
ROUTI NE i nsert();
ROUTI NE r enove();
ROUTI NE st op();

END | CoreCtrl

Figure 3.15: Interface | CoreCtrl .

Coordination levels

As next higher level component the Mol dCt r | component is discussed. This
component has to coordinate the operations of the core and the cl anp
subcomponents (see Figure 3.16).

The code snippet in Figure 3.17 exemplifies this by the cl ose routine.
Its purpose is to control the process of closing the clamp and inserting the

COVPONENT Mol dCtrl | MPLEMENTS | Mol dCtr |
PARANMETERS
corel nsert Pos: REAL : = 150;
SUBCOMPONENTS
clamp : I ampCtrl;
core : |CoreCtrl;

END Mol dCtrl

Figure 3.16: Component Mol dCtr | .

3.5. EXAMPLE CONTROL PROGRAM 41

ROUTI NE cl ose()
BEG N
PARALLEL
cl anp. cl ose();
]
WAI'T cl anp. position() >= corelnsert Pos;
core.insert();
END
ON core.error OR clanp.error
stop();
FIRE error;
RETURN;
END cl ose

Figure 3.17: Routine cl ose.

| NTERFACE | Mol dCt r |
EVENTS error;
FUNCTI ON i sOpen() : BOQ.;
FUNCTI ON i sCl osed() : BOO.;
FUNCTI ON cl anpPos() : REAL;
ROUTI NE open();
ROUTI NE cl ose();
ROUTI NE st op();

END | Mol dCt r |

Figure 3.18: Interface | Mol dCt r | .

core, which should occur in parallel. However, insertion of the core has to
start after the clamp has reached the cor el nsert Pos. In this routine we
do not need to worry about timeouts and possible error conditions of the core
or any other subcomponent. Those routines are already checked for correct
execution and fire error events. Thus, it is sufficient to have an ON handler
for errors reported by the cor e and cl anp subcomponents (which in this
example again fires an event to inform its upper component). In this way,
one gets a more abstract view of a subsystem. The code in Figure 3.18 shows
the interface of the Mol dCt r| component.

Finally, the following routine aut omati C represents the overall auto-
matic control cycle of the machine (Figure 3.19). This is usually the level

42 CHAPTER 3. MONACO

which is also presented to end users. The operation cycle of the machine gets
clearly represented in the code. In the inner control loop first the mold is
closed. Then injection is done and in parallel the cooling time is checked.
Then, in parallel activities, the mold is opened, new material is inserted into
the screw (nozzl e. pl asti ci ze) and, after the mold has been opened to
a determined point, the piece is ejected.

3.5. EXAMPLE CONTROL PROGRAM 43

ROUTI NE aut omati c()
BEG N
BEG N
nozzl e. start Heati ng();
WAI' T nozzl e. t enper at ur eReached(nonirenp) ;
LOOP
BEG N
nol d. cl ose();
PARALLEL
nozzle.inject();

| |
VWAI T TI MEQUT(cool i ngTi ne) ;
END

PARALLEL
nozzl e. plasticize();

nol d. open() ;

WAI' T nol d. cl anpPos() < 0.5;
ejectorCtrl.eject();
END
END

ON nol d. error OR nozzle.error OR systenttopped()
PARALLEL
nmol d. st op() ;
N

nozzl e. stop();
N
ejectorCtrl.stop();
END
END
nozzl e. st opHeating();
END aut omati c

Figure 3.19: Routine aut omati c.

44

CHAPTER 3. MONACO

Chapter 4

Contracts and Constraints

This chapter introduces contracts as a mean for specifying component behav-
ior as well as constraints that describe dependencies between components.
First, Section 4.1 discusses contracts and their relation to MONACO compo-
nents. Section 4.2 introduces an LTS-based automata formalism used to spec-
ify component behavior. The presented automaton formalism is augmented
with pre- and postconditions, as well as invariants in Section 4.3. Constraints
(safety properties) are presented in Section 4.4. Finally, Section 4.5 briefly
describes notations for contracts and constraints.

4.1 Introduction

In general, contracts are formal agreements between two or more parties.
Bertrand Meyer introduced the paradigm of Design By Contract [Mey86|
which defines contracts as specifications that describe as closely as possible
the mutual obligations and benefits involved in the communication between
software elements.

This definition comprises more than usual interfaces in object-oriented
programming languages or MONACO. Interface definitions usually define rou-
tines and functions with their parameter types and return values. While this
description states what can be done with an object of this type (structure,
static behavior), it does not state anything about the effects, valid sequences
(dynamic behavior), and valid state of routine calls. That is, it only specifies

45

46 CHAPTER 4. CONTRACTS AND CONSTRAINTS

the syntax and says nothing about the behavior of components.

In contrast, protocol contracts as introduced in this thesis, define the dy-
namic behavior in the communication between software elements. They are
similar to behavior protocols [PV02], sequencing constraints in Cecil [O090],
and interface automata [{AHO1| (see Section 9.1). Protocol contracts there-
fore allow one to express the following aspects of the dynamic behavior of
components:

Valid call sequences. Operations of components often require a certain
sequence in order to be successful. For example, a component’s behavior
often consists of an initialization phase, several operative actions, and
eventually a termination phase. If this sequence is not obeyed, runtime
errors occur, or in the domain of industrial automation, a machine can
be damaged. It is therefore desirable to explicitly state these restrictions
on the component usage and to be able to check and enforce these
sequences.

Effects of a call. Routine calls normally result in changes of the component
state. These changes (the effects of the routine) are called guarantees
or postconditions and can be expressed by Boolean conditions that are
guaranteed to hold after the call to the routine.

Requirements of a call. In order to be executable, routines may require
the component to be in a certain state. Such a requirement is called a
precondition. A precondition is expressed as a Boolean condition that
needs to hold before a call to the routine can be executed.

Initial state of a component. In order to deduce the situation of a com-
ponent at a certain position in the execution, it is necessary to define
the initial situation, i.e. the state of the component before any routine
of the component has been called.

Invariants. Invariants in protocol contracts describe immutable proposi-
tions that help reasoning about component states by adding informa-
tion about the dependencies of component properties. The dependen-
cies can be caused by physical exclusion of states.

In MONACO we use protocol contracts as outlined above to constrain call
sequences and to specify the dynamic behavior of components. In doing so, we

4.2. AUTOMATA FORMALISM 47

MONACO Interface + Protocol Contract

Routine Routine

I

MoNAcO Component

MONACO Interface + MONACO Interface +
Protocol Contract Protocol Contract
Subcomponent Subcomponent

Figure 4.1: Protocol contracts in the MONACO component hierarchy.

exploit the hierarchical structure of MONACO components. Since each com-
ponent implements an interface, and subcomponents are specified by their
interface type, the MONACO component hierarchy encapsulates components
as illustrated in Figure 4.1. The figure shows a component with two routines,
and two subcomponents each specified by their interface. The interfaces of the
subcomponents each have a contract describing how the subcomponents can
be used. The component itself also implements an interface and a contract.
The contract of the component defines how its routines can be called.

In the following, we introduce protocol contracts for MONACO compo-
nents which are based on labeled transition systems (LTS) [BJKT05].

4.2 Automata Formalism

This section reviews the well-known automata formalism labeled transition
systems (LTS) [BJKT05] and introduces a MONACO-specific extension of LTS
which is used to capture the component behavior by encoding it as valid event
sequences.

48 CHAPTER 4. CONTRACTS AND CONSTRAINTS

Definition 4.1 A labeled transition system is a quadruple L = (S, I, A, T')
that consists of the following elements:

e S is the set of states.

o [C S is the set of initial states.

o A is the set of actions (labels).

e T'C S x AxS isthe transition relation.

In contrast to finite automata, LTS do not have final states, since they
help reasoning about sequences of events, not about language acceptance.
Figure 4.2 shows an example of a labeled transition system consisting of
three states S = {1, 2,3}, the initial states I = {1}, the actions A = {a, b, c},

and the transition relation T = {(1,q,2), (2,5, 3), (3,¢,1)}.
¥

S

Figure 4.2: Labeled transition system.

To serve our special requirements of specifying MONACO component con-
tracts, we extend LTS as follows. Routine calls in MONACO have synchronous
semantics and can be aborted during execution. This semantics has to be re-
flected in the specialized LTS by separating routine calls and routine returns.
The set of actions will be constrained to contain only routine calls, routine
returns, events and an unobservable internal event. First, we formally intro-
duce a MONACO component interface.

Definition 4.2 Let [= (R, F, E) be the description of a component inter-
face where the elements R, F', E have the following meaning:

o R is the set of routine symbols.

4.2. AUTOMATA FORMALISM 49

e I is the set of function symbols.

e I is the set of event symbols defined in the interface.

Remark: We disregard parameters in the description of func-
tions and routines. Parameters play a minor role in MONACO
programs, while disregarding parameters eases the description of
contracts.

Definition 4.3 We call our extension of LTS protocol automata. A protocol
automaton is a quadruple PA = (S, s A T) describing an LTS with only
a single initial state and a constrained set of actions.

e S is the set of states.

o s c S s the initial state. In contrast to LTS, we only need exactly
one initial state as a component typically has exactly one initial state.

o A= Rx{call,ret} U{r} is the set of actions (alphabet). R is the set of
routine symbols defined in the interface of a MONACO component (see
above). T is the empty action representing an unconditional, immediate
transition.

e T'C S x A xS isthe transition relation.

The set of actions A can be further subdivided into the sets A..; = R X
{call} and A,.; = R x {ret}. These sets are called the sets of call actions and
return actions. Similarly, the set Toqy = S X Acay X S and Trep = S X Aper X S
are called the set of call and return transitions, respectively.

The separation of routine calls and routine returns is illustrated by two
examples in Figure 4.3. Example (a) shows a protocol automaton consisting
of three states and two transitions. State 1 is the single initial state. The two
transitions represent execution of routine r1. The call is separated into the
call and the return from the call. The first transition is a call transition, while
the second is a return transition. Figure 4.3 (b) shows a protocol automaton
similar to the one in (a). The difference is in the call to routine r1, which can
either return (r1,ret) or be aborted. The additional transition from state 2
to state 3 is a 7 transition describing an unobservable internal event. The
use of 7 transitions will be explained in Section 4.3.

50 CHAPTER 4. CONTRACTS AND CONSTRAINTS
v v

(r1, call) (r1, call)

N\

(7“1, ret) (7“1, ret) \I‘ T
® O
(a) (b)

Figure 4.3: Protocol automata showing the separation of routine call and
routine return and different types of transitions.

4.3 Interface Contract

We use contracts to describe valid call sequences of routines for a MONACO
interface. They are based on the notion of protocol automata presented above
(Section 4.2), but have additional information like preconditions and post-
conditions stating required states and guarantees about the behavior of a
component.

4.3.1 Pre-, Post-, and Initial-Conditions

Contracts contain pre- and postconditions to express requirements and guar-
antees of component properties in certain states. Guarantees can be explicitly
canceled using retraction, and guarantees about the initial values of compo-
nent properties can be made. These conditions are reflected in a contract by
the functions Pre, Post, Retract, and Initial.

Pre- and postconditions are logical propositions over all function sym-
bols plus numerical and Boolean constants. That means we use the function
symbols from F' as logical variables. Functions with numerical return type
can be used with relational operators and numerical constants. We allow the
combination of logical expressions with the logical operators A, V, and —.

We denote the set of all satisfiable logical propositions over symbols f € F
for an interface I as C.

Definition 4.4 Let S be the states of a protocol automaton. Then we define

4.3. INTERFACE CONTRACT 51
four functions:

e Pre: S — C s the function mapping states to the set of preconditions.
The semantics of a precondition of a state is that this condition must
be fulfilled before the state can be reached (i.e. the transition leading to
the state can be executed).

e Post: S — C isthe function mapping states to the set of postconditions
with the meaning that the given condition is quaranteed to be true after
the state is left (i.e. the transition leaving the state is executed).

e Retract : S — P(F) maps states to function symbols. The semantics of
retraction of a function symbol is, that any guarantee about this symbol
18 retracted.

e Initial € C describes the initial conditions holding before any routine
has been called. This description is called initial condition and can be
regarded as a guarantee, that the component initially is in a certain
state.

By default, a guarantee holds, until it is invalidated by a more recent
guarantee. For details about knowledge update and retraction, refer to Sec-
tion 6.3.

4.3.2 Invariants

Components have state properties with logical dependencies on each other.
A dependency is often due to physical laws prohibiting concurrent presence
of two states. These dependencies can be formulated as Boolean formulas,
called invariants. In the literature, such invariants are also referred to as
integrity constraints [HR99, Win90|. If these invariants are stated explicitly,
they help in the knowledge deduction process by adding additional knowledge
and keeping the knowledge base consistent.

For example, let’s assume we have a hydraulic cylinder component that
can be opened and closed. Its observable properties are the Boolean functions
i sOpen and i sCl osed. Both properties can never be true simultaneously.
Yet, it is possible that the component is neither opened nor closed (it is in

52 CHAPTER 4. CONTRACTS AND CONSTRAINTS

[Invariant: NOT (isOpen() AND isCl osed())]

Listing 4.1: Invariant describing the logical dependency between isOpen
and isClosed

some intermediate position). An invariant describing the dependency of these
properties together with the knowledge of one of the properties allows us to
deduce that the other property does not hold. Listing 4.1 shows an exam-
ple invariant describing the logical dependency between the two properties
mentioned above.

Definition 4.5 We associate a set of invariant conditions Inv with an in-
terface contract. Inv € C, that means invariant conditions are logical propo-
sitions over the function symbols F (see above).

4.3.3 Summary

In summary, an interface contract consists of the following elements:

e PA = (S, s A T) is the protocol automaton defining valid call
sequences.

e Pre: S — (C'is the function mapping states to the set of preconditions.

e Post : S — (' is the function mapping states to the set of postcondi-
tions.

e Retract : S — P(F) is the function mapping states to propositional
symbols for retraction of knowledge.

e [nv € C is the set of invariant conditions (integrity constraints).

4.3.4 Examples

In the following, two example contracts will be presented, showing pre-, post-
and initial conditions, as well as invariants. An example for knowledge re-
traction is presented in Section 6.3.2. The first example shows a contract for
a hydraulic cylinder. The cylinder can be opened and closed. The interface of

4.3. INTERFACE CONTRACT 23

| NTERFACE | Cyl i nder
ATOM C ROUTI NE st art Open() ;
ATOM C ROUTI NE start C ose();
ATOM C ROUTI NE st op();

FUNCTI ON i sOpen() : BOQ;
FUNCTI ON i sCl osed() : BOO.;
END | Cyl i nder

Listing 4.2: Interface of a cylinder component

the cylinder component is shown in Listing 4.2. The routines St art Open,
st art C ose, and st op atomically start or stop a movement of the cylinder.
The Boolean functions i sSOpen and i SCl osed return whether the cylinder
is fully opened or fully closed.

To make the graphical representation more readable, transitions in the
graphical representation of protocol automata will be labeled with r! for rou-
tine calls (instead of (r, call)) and r? for routine returns (instead of (r, ret)).

The contract for the | Cyl i nder interface is as follows: the cylinder
can be opened with the routine call st art Open and closed with a call of
the routine st art Cl ose. The effect of a routine call is that the opening
respectively closing movements are started and the routine call immediately
returns. The movement can be stopped using the routine st op.

The two functions of the interface report whether the cylinder is currently
opened, closed, or neither opened nor closed (both functions return false).
Figure 4.4 shows the protocol automaton for this contract. Note that the
contract does not state that the st art Cl ose routine causes the i sCl osed
function to evaluate to true. The only conclusion that can be made is that
starting the close movement makes i sQpen evaluate to false. Note, that the
postconditions are associated with the states representing the execution of
the routine. The postconditions hold, as soon as this state is left.

Additionally an invariant states that the cylinder can never be open
and closed simultaneously. The invariant is given by Inv = {=(isOpen A
isClosed)}.

The second example describes a contract for a driller machine like the one
shown in Figure 4.5. The machine consists of two subcomponents, a driller
and a cooler. The interface | Dril | er of the driller component declares

54 CHAPTER 4. CONTRACTS AND CONSTRAINTS

Post : ~isOpen()

startClose! startClose?

Sta/rtopen' Post : —isClosed() StCLTtOpen?
Figure 4.4: Protocol automaton for the | Cyl i nder interface.

Figure 4.5: Driller and cooler component

routines and functions as outlined in Listing 4.3. The intended behavior of the
interface is, that any component implementing this interface should first be
started, then be moved down and up in turn and eventually be stopped. The
behavior is illustrated by the protocol automaton in Figure 4.6. It contains
postconditions that guarantee the effects of execution of the routines and
has the initial condition —isStarted(). Moreover, the call of routine down
has a precondition requiring that a certain revolution speed must be reached
(rpmReached()).

The interface | Cool er for the cooler component declares the routines
st art and st op, as well as the function i sCool i ng. The cooler component
keeps the temperature of the driller at an acceptable level. Its behavior is
described by the protocol automaton shown in Figure 4.7. It describes that
the cooler can be started and stopped. Additionally, the effects of the two
routines are specified as postconditions.

4.4. CONSTRAINTS 95

| NTERFACE I Driller
ATOM C ROUTI NE start();
ATOM C ROUTI NE st op();
ATOM C ROUTI NE down() ;
ATOM C ROUTI NE up();
FUNCTION i sStarted() : BOQ.;
FUNCTION isDrilling() : BOQL;
FUNCTI ON r pnReached() : BOQOL;
END I Driller

| NTERFACE 1 Cool er
ATOM C ROUTI NE start();
ATOM C ROUTI NE st op();
FUNCTI ON i sCool i ng() : BOQ;
END | Cool er

Listing 4.3: Interfaces of a driller and a cooler component

up! ~ down’?

N

Pre : rpmReached()
Post : isDrilling()

Post : ~isDrilling()

up? down!

start! _ start? stop! _ stop?

J J UV
Post : isStarted() Post : ~isStarted()
Figure 4.6: Protocol automaton for the | Dri | | er interface.

start?

ost : isCooling()

start!

stop?

Post : =isCooling()
Figure 4.7: Protocol automaton for the | Cool er interface.

stop!

4.4 Constraints

Propositional constraints describe safety properties (refer to Section 2.2.1)
that must be true in every state of the system ("something bad will never
happen"). In contrast to invariants, constraints are not maintained by the
physical world, but rather describe that possibly fatal states must not be
reachable.

56 CHAPTER 4. CONTRACTS AND CONSTRAINTS

Constraints define relationships between several components and there-
fore do not belong to a contract of a single component. For example, imagine
a component having multiple subcomponents. The subcomponents are in-
dependent as they have separate contracts describing their local behavior,
disregarding the existence of other components. This strict separation of
components allows for simple exchange of component implementations. Nev-
ertheless, it is necessary to provide mechanisms to synchronize two or more
contracts, i.e., to describe states that the combination of those components
should never reach.

Let’s assume, there is a component ¢ with subcomponents with interfaces
L, I, ... I, where each interface I; consists of the elements I; = (R;, F;, E;).
Then we associate with the component ¢ a constraints Constr. being a logical
proposition over symbols f € |, F;.

Assume we have a drilling machine as defined above. In this example, a
constraint is that the driller must not be drilling before the cooler is cool-
ing. Similarly, the cooler must not be stopped, while the driller is drilling.
Thus, the proposition describing this constraint is —(driller.isDrilling() A
—cooler.isCooling()).

Remark: In order to avoid name clashes in constraints, function
symbols are qualified with the name of the subcomponent they
belong to.

4.5 Notations

In the following, we introduce two different notations for describing contracts.
The first notation only allows us to describe valid call sequences. The second
notation is more powerful and allows specifying all aspects of a contract.

4.5.1 EBNF Notation

This notation is based on the standard meta language EBNF (Eztended BNF,
ISO 14977 [ISO96b]). The notation does not make use of non-terminal sym-
bols, but each production describes the complete contract for an interface
as a regular expression. The terminal symbols allowed are all routine names

4.5. NOTATIONS 57

<~ - ———— =

rl rl r2 [..] {.-.}

Figure 4.8: Translation of EBNF to protocol automata (... stands for an
arbitrary subexpression).

in the set R (see protocol automata above), denoting the routines of the
MONACO interface, to which the contract belongs.

The following EBNF metasymbols are available (... stands for an arbitrary
subexpression):

e [...] The contained subexpression is optional.

e {..} The contained subexpression can be repeated arbitrary many
times (including zero times).

(...) Groups subexpressions.

(...] ...) Separator for alternative subexpressions. The subexpressions
are chosen nondeterministically.

. (period) Terminates the definition of a protocol contract.

The conversion of terminal symbols and the metasymbols into protocol
automata is straight-forward. Figure 4.8 shows the resulting protocol auto-
mata for single symbols, symbol sequences and the presented metasymbols.
Routine symbols are converted into an automaton consisting of three nodes,
connected by a call and a return transition. The first node is the initial
state, the intermediate state represents the running routine, the last state
is the state after the routine is executed. Sequences of terminal symbols are
translated by creating the protocol automata of individual symbols and then
merging the end state of the first symbol’s protocol automaton with the ini-
tial state of the second symbol’s protocol automaton. The metasymbols for

58 CHAPTER 4. CONTRACTS AND CONSTRAINTS

start! _start]

—> O O O

Figure 4.9: Protocol automaton resulting from Listing 4.4.

optionality add a 7 transition from the initial state to the end state of the
subexpression, thus allowing to omit the subexpression. The metasymbols
for repetition merge the initial and the end state to a common state which is
the initial state of the resulting automaton. Alternative subexpressions are
created by merging all initial states and all end states of the subexpressions.
Appendix C gives a full listing of the grammar of the EBNF notation.

The EBNF notation is demonstrated by the following example. Let’s as-
sume we have an interface | Dri | | er declaring the routines st art, st op,
down, and up. The intended behavior of the interface is, that any component
implementing this interface should first be started, then be moved down and
up in turn and eventually be stopped. The protocol contract for I Dri | | er
in EBNF notation is listed in Listing 4.4.

IDriller = start { down up } stop .

Listing 4.4: Contract for | Dri | | er in EBNF notation

Figure 4.9 shows the protocol automaton resulting from the contract for
the I Dri | | er interface.

4.5.2 Detailed Protocol Contract Notation

This notation explicitly enumerates all states of the protocol automaton,
together with all transitions between the states and the initial, pre-, and
postconditions as well as the invariants.

The notation starts with the declaration of the MONACO interface, fol-
lowed by the initial condition, the invariants and a list of state declarations.
A state declaration declares a state with a unique identifier (unique within
the protocol contract) followed by a list of pre- and postconditions for the
state. Then all outgoing transitions are listed. A transition is either a routine
call, or a routine return, specified with the routine name followed by a ! or

4.5. NOTATIONS 29

Interface IDriller d [Initial: NOT d.isStarted()]:
initial sO = start!s1.

sl [Post: d.isStarted()] = start?s2.

s2 = stop!s3 down! s4.

s3 [Post: NOT d.isStarted()] = stop?s7.

s4 = down?s5.
S5 = up! s6.
s6 = up?s2.
s7 = .
Listing 4.5: Contract for | Dri | | er in detailed protocol contract notation

a ? respectively, or a 7-transition.

Imagine that we want to extend the protocol contract in Figure 4.9 by
adding the state property i SSt art ed, modeled as a Boolean function in the
| Driller interface. Listing 4.5 shows this extended protocol contract for
| Drill er in the detailed protocol contract notation. The resulting contract
is pictured in Figure 4.10. Note that states sl and s3 now have a postcondi-
tion.

For sake of brevity, names of states are chosen very short. For a better
readability one would choose more descriptive state names like init, starting,
started, and so forth.

In summary, the detailed protocol contract notation is much more expres-
sive, since it can be used to describe all features of a contract. In practice,
one would often start with an EBNF description of a contract, which can
be translated into protocol automata and then back into the detailed pro-
tocol contract notation. Henceforward, one would only adapt the generated
detailed protocol contract notation by adding pre- and postconditions, in-
variants, and initial conditions as necessary.

Appendix D gives a full listing of the grammar of the detailed protocol
contract notation.

4.5.3 Constraint Notation

Constraints refer to state properties of MONACO subcomponents (in general
declared by their interface). In order to express such properties, we first
declare subcomponents and then give constraints as Boolean propositions.

60 CHAPTER 4. CONTRACTS AND CONSTRAINTS

up! /85\ down?
N

own/!
Post : isStarted() Post : misStarted()

tart! tart? stop! stop?

Figure 4.10: Protocol automaton resulting from Listing 4.5.

up?

CONSTRAI NT (I Cool er cooler, IDriller driller)
[NOT (driller.isStarted() AND NOT cooler.isCooling())]

Listing 4.6: Driller/Cooler constraint

Listing 4.6 shows the constraint defined above: the constraint affects the
components cool er and dri |l er implementing the interfaces | Cool er
and | Dri | | er respectively. The condition states that it must never happen
that the driller is started (driller.isStarted()) but the cooler is not
cooling (NOT cool er. i sCool i ng).

Appendix E gives a full listing of the grammar of constraints.

Chapter 5

Implementation Automaton

Chapter 4 introduced the notion of contracts, protocol automata, and con-
straints describing valid behavior of components. In this chapter we introduce
means to represent component implementations as automata. In Chapter 6
then, we will see how our verification approach uses implementation auto-
mata to check them against contracts and constraints.

Section 5.1 introduces implementation automata, an automata formalism
similar to protocol automata. Implementation automata reflect the actual
sequence of calls in a MONACO component. In order to create the implemen-
tation automaton of a component, it is necessary to create sub-automata for
every routine of the component (cf. Section 5.2). These automata will then
be inserted into the automaton of the component’s contract. The insertion
of the routine automata into the parent component contract is called refine-
ment and presented in Section 5.3. The implementation automaton thereby
becomes an abstract representation of all possible execution paths of a com-
ponent.

5.1 Automata Formalism

Implementation automata are similar to protocol automata presented in Sec-
tion 4.2. Implementation automata represent the actual control flow within
a component and contain all calls to subcomponents, as well as calls to local
routines.

61

62 CHAPTER 5. IMPLEMENTATION AUTOMATON

First, we introduce a formal description of a MONACO component.

Definition 5.1 Let C = (R, F, E, SC) be the description of a component
where the components R, F, E, SC have the following meaning:

o R is the set of routine symbols.
o [is the set of function symbols.
o I is the set of event symbols defined in the component.

e SC is the set of subcomponents. Let sc € SC be a subcomponent.
The function name(sc) then gives the name of the subcomponent, while
type(sc) gives the interface of the subcomponent. Recall that subcompo-
nents can only be declared with interface types.

Remark: We disregard parameters in the description of functions
and routines. Parameters play a minor role in MONACO programs
in general, and in the verification approach in particular, while
disregarding parameters eases the description.

Based on the definition of components we introduce implementation au-
tomarta.

Definition 5.2 We call the LTS-based automata formalism for describing
implementation details implementation automata. An implementation auto-
maton is a quintuple IA = (S, st A, s/mal T describing an LTS with only
a single initial state, a constrained set of actions and a final state:

o S is the set of states.
o s ¢ S s the initial state.

o A = R x {call,ret} U SCR x {call,ret} U {r} is the set of actions
(alphabet). R is the set of routine symbols defined in the MONACO
component (see above). SCR is the set of subcomponent routine sym-
bols. That means let sc € SC be a subcomponent with type(sc) = I, =
(Rse, Foe, Ese) then SCR = |J, cqc Rse- T is the empty action repre-
senting an unconditional, immediate transition.

5.1. AUTOMATA FORMALISM 63

e s/imal ¢ G s the final state.

e T'C S x A xS isthe transition relation.

Remark: In the following, routine symbols of subcomponents
are qualified with the name of the respective subcomponent
name(sc). For example, consider a subcomponent dri || er of
type I Drill er. The symbol for the subcomponent’s routine
start would then be driller.start.

Additionally, two functions are introduced to represent conditions at-
tached to states of the implementation automaton. In the following, condi-
tions are logical propositions over all function symbols of subcomponents plus
numerical and Boolean constants. That means that we use the function sym-
bols from F. as logical variables. Functions with numerical return type can
be used with relational operators and numerical constants. We allow the com-
bination of logical expressions with the logical operators A, V, and —. That
means let sc € SC be a subcomponent with type(sc) = Iy = (Rse, Fse, Ese)
then allowable function symbols are Uscesc F,.. We denote the set of all
logical propositions over symbols f € (J, cqc Fsc as C.

The functions to represent conditions attached to states are:

e CFC : S — (Cisthe function mapping states to control flow conditions.
These conditions stem from control flow statements like | F, WHI LE or
WAI T and are valid at the associated states.

e Post: S — (' is the function mapping states to postconditions. These
postconditions stem from the contract of the component and need to
be verified in the component implementation. For details on these post-
conditions, see Section 6.6.1.

Figure 5.1 shows the overall process of creating an implementation auto-
maton: First, the automata of the routines are created. These automata are
then inlined into the component’s protocol automaton wherever a call to the
respective routine is found. The automaton of a routine may even be inlined
multiple times, if there is more than one call in the protocol automaton. Inlin-
ing routine calls is only possible because MONACO disallows recursive routine
calls (Section 3.3.1). In the following, we show the construction process in
detail.

64 CHAPTER 5. IMPLEMENTATION AUTOMATON

MONACO Interface + Interface Contract

Routine a() Routine b()

¥
O O
N
~ AN
@ \\\ © \
N \
Al \

~ N Implementation
+~_ Automaton

\\
~ N}

Figure 5.1: The full implementation automaton of a component is built from
the implementation automata of its routines, inlined into the component’s
protocol automaton.

5.2 From MONACO to an Automaton

This section describes how an implementation automaton is created from
an existing implementation of a MONACO component. We will start by first
defining how routine calls are translated to implementation automata. Then,
we will show concatenation of implementation automata to model a sequence
of routine calls (or other statements). The last part of this section deals with
MONACO control flow statements and their translation to implementation
automata.

5.2.1 Routine Calls

Routine calls to subcomponents are the essential statements upon which we
build implementation automata. The following code example shows a call to
the routine Rout i neA of the subcomponent subc.

5.2. FROM MONACO TO AN AUTOMATON 65

subc. Rout i neA() ;

Listing 5.1: Calling a ROUTI NE of a subcomponent

Remark: Calls of component routines (contrary to subcompo-
nent routines) are treated as if the statements of the routine were
inlined at the location of the routine call.

As in protocol automata, routine calls are modeled by two transitions: the
first transition models the call of the routine (r, call), the second transition
models the return of the routine call (7, ret).

Definition 5.3 A call of a routine r of a subcomponent creates an imple-
mentation automaton P as follows:

o Sp=1{s,5,5"} is the set of states necessary to express a call. The state
s 1is the state before the call, the state s’ is the state during the call and
the state s” is the state after the call.

o s = s s the state before the routine call.

o Ap = {(subc.RoutineA, call), (subc. RoutineA,ret)} is the set of ac-
tions used in this implementation automaton.

. sg"“l = 5" is the state after the call of the routine.

o Tp = {(s,(subc. RoutineA, call), s),(s, (subc. Routine A, ret), s")} is the
set of transitions between the states.

Remark: If the called routine r is atomic (cf. Section 3.3.1) then
the property isAtomic(s’) holds.

Figure 5.2 shows an implementation automaton that models such a simple
routine call.

Remark: The presented notation of implementation automata
only cares about routine calls to subcomponents and WAI T/I F
statements (for knowledge extraction). Therefore all other state-
ments (except for control flow statements) like assignment state-
ments are ignored.

66 CHAPTER 5. IMPLEMENTATION AUTOMATON

o

(r,call) € Acan

©

(ryret) € Apet

8//

Figure 5.2: Implementation automaton for a simple routine call.

5.2.2 Statement Sequences

In imperative programming languages — MONACO is one of them — programs
typically consist of statements that are executed in sequence. To reflect a
sequence of routine call statements, implementation automata can be con-
catenated. The following code example shows the sequence of two routine
calls.

subc. Routi neA();
subc. Routi neB();

Listing 5.2: Calling two ROUTI NEs of a subcomponent

Statement sequences, such as two consecutive routine calls are generated
by automaton concatenation. The concatenation simply merges the final state
of the implementation automaton of the first statement with the initial state
of the implementation automaton of the second statement.

Definition 5.4 In general, the concatenation (sequential composition) PoQ)
of two implementation automata P and () is defined as follows:

e Spog = SpUSg \ sg”t. The set of states consists of the states of both
implementation automata, without the initial state of the second auto-
maton.

. s%g = s, The initial state of the first automaton remains the initial

state of the resulting automaton.

o Apog = ApUAg. The set of actions is the union of the actions of the
two implementation automata.

5.2. FROM MONACO TO AN AUTOMATON 67
. s{jggl = sg"al. The final state of the second automaton remains the
final state of the resulting automaton.

o Tpog =TpU{(s,a,8) € Tg | s # s} U{(s5", a,8) | (sib, a,s') €
To} U{(s,a,s5™") | (s,a,si™) € To}. The transitions in the concate-
nated implementation automaton consist of all transitions of the first
automaton plus all transitions of the second automaton where transi-
tions involving the initial state are bent over to the first automatons

final state.
S1 So
(r1, call) (rq, call)
OO
(rq, ret) (rq, ret)

Figure 5.3: Implementation automata for simple routine calls ((a) and (b))
and the concatenation (c) of the two protocol automata.

Figure 5.3 (c) shows the concatenation of two automata. Note that P o Q
means that P is executed prior to the execution of Q).

5.2.3 Wait Statement

The WAI T statement ensures that a certain condition holds by suspending
execution until the condition holds. Therefore we can use the condition in
the implementation automata by adding this knowledge as a control flow
condition to a new state s.

68 CHAPTER 5. IMPLEMENTATION AUTOMATON
|

CFC: ¢

Figure 5.4: Implementation automaton for a wait statement.

Definition 5.5 Adding new knowledge through the WAl T statement creates
a single-state automaton as follows:

o Swait = {s}. s is the single state of the implementation automaton.

e st — 5. The single state s is the initial state.

e Ay = 0. No actions are in this single state automaton.

final

o 5. = 5. The single state s is the final state.

o T,uit = 0. There are no transitions in this automaton.
o CFCwait = {(s,{c})} The CFC function for state s maps s to the

condition of the WAl T statement.

Figure 5.4 shows the implementation automaton resulting from a WAI T
statement. Listing 5.3 shows a WAI T statement waiting for the function
i sSt art ed of the subcomponent subc to become true.

WAI T (subc.isStarted());

Listing 5.3: A MoNAcO WAI T statement waiting for a subcomponent.

5.2.4 Branch Statement

The MONACO | F statement can be used to branch the control flow. It allows
one to specify any number of | F branches and one optional ELSE branch.
Depending on the evaluation of the conditions, the control flow chooses one
of the branches.

The semantics of the | F statement allows us to regard only a simple | F
with an ELSE branch, since ELSI F branches can be seen as ELSE branches
with an | F statement.

5.2. FROM MONACO TO AN AUTOMATON 69

To create the implementation automaton for an | F statement, first the
implementation automata of the | F and ELSE branch are built separately. If
no ELSE branch exists, the implementation automaton for the non-existent
branch consists of only a single state, being the initial and final state. The
branching of the two implementation automata creates a common initial state
as well as a common final state.

Definition 5.6 The branching automaton of two implementation automata
P and Q, where P describes the | F branch, and) describes the ELSE branch
of an | F statement, can be defined as follows:

e Spio =SpUSqgU{ss,sp} where s; and sp are new states.

o s}"‘g = s; 18 the new initial state. This state is where the automaton

branches.

e Apig = ApU Ag is the combined set of actions.

o sﬁ"gl = sp. The new state s is the new final state. This is where the

branches merge.

o Tpig=TpUTU {(sg"al, T, SF), (sﬁnal, 7,5r), (1, T, s5%) (51,7, 32}”)}
The set of transitions is extended by T-transitions from the common
initial state sy to the initial states of P and Q). Sitmilarly, T-transitions

from the final states of P and @) to the common final state sp are added.

e CFCpig = CFCpUCFCoU{(sp" {c}), (s, {~c})} is the control
flow conditions function, where c is the branching condition.

Figure 5.5 shows the automaton for an IF statement that has two
branches. The conditions of the branches are as reflected in the automa-
ton as control flow conditions (C'FC') at the branching states.

5.2.5 Repetitions

The repetition of a block using MONACO’s WHI LE statement is done by first
creating the implementation automaton P of the block that is to be repeated.
The next step is to connect the final state of the block with a 7-transition to
the initial state.

70 CHAPTER 5. IMPLEMENTATION AUTOMATON

T y N T
/ N
CFC: ¢ sﬁ?it CFC: —c¢ SWt
% %
P Q@
Y %
Sgnal Sgnal
___A A/
\ s/
T s

Figure 5.5: Implementation automaton for the Monaco I F statement. The
automaton shows two branches.

Definition 5.7 The implementation automaton for repeated execution of a
code block P with MONACO’s WHI LE statement is defined by:

o Sy =SpU{sy,sr} is the set of states, where s; and sp are new states.

o s\U" = sy is the new initial state.

o A= Ap. The set of actions remains the same.

. sg"“l = sp 18 the single final state.

o Ts = TpU{(sy, 7, 55) U{(sy, 7, sBVYU{ (s 7, 5;)}. Transitions are
added from sy to the old initial state and the new final state, as well as
from the old final state to sj.

o CFCx=CFCpU{(s%" c)} U{(sF,c)} is the control flow condition

function, where ¢ is the WHI LE condition.

Figure 5.6 shows the implementation automaton resulting from the code
in Listing 5.4.

5.2. FROM MONACO TO AN AUTOMATON 71

WHI LE ¢
BEG N
subc. Routi neA();
subc. Routi neB();
END

Listing 5.4: WHI LE statement

TN \

CFC:mc OFC:c Sg” \
\
\

Figure 5.6: Implementation automaton for the Monaco W HILFE statement.

5.2.6 Parallel Statement

The PARALLEL statement is used to execute code in parallel. The following
example shows the parallel execution of two routine calls.

PARALLEL
subc. RoutineA(); // first parallel code bl ock

subc. RoutineB(); // second parallel code bl ock
END

Listing 5.5: PARALLEL statement

The implementation automaton for the PARALLEL statement is created by
asynchronous composition of the implementation automata of the parallel
code blocks. We generate all possible interleavings of the parallel code blocks.
The definition of asynchronous parallel composition is associative [Bie0§|,

72 CHAPTER 5. IMPLEMENTATION AUTOMATON

therefore Iy || Iy || --- || I, can be constructed by first creating the parallel
automaton I || Iz, and then using the resulting automaton to create (I ||
I5) || I5. Therefore, we show the interleaving of two parallel blocks only.

Definition 5.8 Let P, (Q be two implementation automata, each represent-
ing a code block. The asynchronous composition P || Q of the two automata
can be defined as:

e Spig = Sp X Sq. The set of states of two parallel automata is the
Cartesian product of the sets of the two automata.

nit __ init Linit
spio = (sp",5g")

e Apjo = ApUAq

. sgﬁgl = (s{j"al,sgml). The final state is the pair of the final states of

the two automata.

e Tpig = {((sp,5q),a, (sp,5Q)) | (sp,a,sp) € Tp}
U{((sp,5q),a,(sp,50)) | (sq,a,sp) € T} Transitions in the parallel
automaton describe the possible interleaving of the two automata.

Figure 5.7 shows the parallel asynchronous composition of two automata
P and (). The figure clearly illustrates that by interleaving, any sequence
of transitions is possible, as long as the sequence was possible in one of the
original automata.

Interleaving of Atomic Calls

While the approach of interleaving all states of two parallel automata reflects
the semantics of MONACO, it does not reflect the fact, that calls to atomic
routines can not be interrupted (confer to Section 3.3.1). Therefore, if a
state represents the state in an atomic routine call, then this state is not
interleaved.

Definition 5.9 We redefine the transition relation Tpq as follows:

o Tpig = {((sp;50).a,(sp,5q)) | (sp,a,sp) € Tp N —isAtomic(sg)}
U{((sp,5qQ);a, (sp,sq)) | (sq,a,s0) € To A —isAtomic(sp)}.

5.2. FROM MONACO TO AN AUTOMATON 73

Figure 5.7: Implementation automaton for the Monaco PARALLFEL state-
ment (c). The automaton shows the two parallel blocks P (a) and @ (b) being
interleaved resulting in the automaton P || Q.

Figure 5.8 shows the interleaving of calls to the routines 1 and r2, where
the call to r1 is atomic.

5.2.7 Asynchronous Event Handling

MONACO offers an asynchronous event handling mechanism similar to the
try — catch construct of C/C++ style languages. MONACO’s event handling
mechanism allows one to guard the execution of a code block by an arbitrary
condition. The semantics is, that the execution of the guarded block is ter-
minated if the condition turns true. Execution then continues in the handler
code.

Again, handling of events within a block is achieved by first creating the
implementation automaton of the block that is guarded by the handler (P)
and the implementation automaton of the handler code (Q). The next step
is to create an event transition e from every state that is between a call and
a ret-transition in the guarded block to the first state of the handler code. If

74 CHAPTER 5. IMPLEMENTATION AUTOMATON

Figure 5.8: Implementation automaton for the Monaco PARALLFEL state-
ment where routine r1 is ATOM C and thus isAtomic(s}) holds. In contrast
to Figure 5.7 there is no interleaving of the state).

BEG N

subc. RoutineA(); // block guarded by the handl er
ON subc. event

subc. RoutineB(); // handl er code

END

Listing 5.6: ON handler

the handler automaton is an empty automaton, transitions are created from
any state of the guarded block to the final state. At the end of the handler
block, execution continues after the guarded block.

Definition 5.10 Adding an event handler automaton Q) for an event condi-
tion ¢ to an implementation automaton P is defined as follows:

e Sp.g = SpUSq is the set of states.

o 5P, = sB". The initial state of the guarded automaton remains is the
initial state of the resulting automaton.

5.2. FROM MONACO TO AN AUTOMATON 75

o Ap..g = Ap U Ag is the set of actions.

. sgffé = 51" The final state of the guarded automaton remains.
o Tpg=TpUToU{(s,7,54") | 35,7 : (s, (r,call),s) € Tp

A —isAtomic(s)} U {(sg"“l,T, sI"Y . Bvent transitions from all call-

sites of non-atomic routines to the initial state of the handler automa-
ton are added.

o CFCpog={(s5" {c})}U{(s,mc) | s € SpAs# st Ns# s} is
the CFC' function, where c is the condition of the ON handler (if such
a condition exists). The condition is true in the initial state of the on

handler and s false in the guarded block.

b

(r1, call) S
Ve
CFC: —c //m L e
(2 //II SQ CFC:
I
(r1,ret) !
T v
CFC: —c () 'l Q
] .
(ro,call) | | |
I
. / final
CFC Q/ if?_/
(re, ret) -

Figure 5.9: Implementation automaton for the Monaco event handling con-

struct.

Figure 5.9 shows the implementation automata for a code block (show in
Figure 5.10 and an event handler block and how the handler block is attached
to the guarded code block.

Using the definitions above, we are able to create implementation auto-

mata for arbitrary MONACO code within a single routine. The automaton
reflects the sequences of routine calls, routine returns and events that are

possible in the respective MONACO code.

76 CHAPTER 5. IMPLEMENTATION AUTOMATON

BEG N
riQ);
r2();

ON ¢

Il Q
END

Figure 5.10: Code for the event handling example in Figure 5.9.

5.3 Automata Refinement

Automata refinement describes the process of creating an implementation
automaton for a component. This is done, by creating implementation auto-
mata for all routines of the component. These automata are then inlined into
the protocol automaton of the component, wherever a call to the respective
routine is found. Figure 5.1 gives an overview of this process. This way, the
abstract description of the parent component (C, the protocol automaton of
the component interface) is incrementally refined to a more concrete one (C’,
the implementation automaton of the component) [Sif01].

Definition 5.11 We call the replacement of calls within a protocol automa-
ton PAc by the implementation automaton I A, that models the implementa-
tion of the component’s routine r the refinement of PAq by IA,. We denote
this refinement PAc < IA,. Let PAc = P, 1A, = @, and for each call site
of routine r, define the states callStart;,inCall;, callRet; € Sp describing a
call site i of routine r in P. The three states therefore are connected with the
transitions (callStart;, (r, call),inCall;) and (inCall;, (r,ret), call Ret;).

The automaton resulting from inlining a routine call at call site t , IAp~q
is formally defined by

e Speg = (Sp U Sg) \ {inCall;}. The resulting set of states combines
the two automata’s states without the state modeling the call execution

(inCall;).

init _ init . -
o spig = sp". Theinitial state of P remains.

L4 AP<Q = APUAQ

. sﬁzg — 51" The final state of P remains.

5.3. AUTOMATA REFINEMENT 7

|

a
T // m
4 init

callStart 4 S
@), 3
(r, call) :
Y.

inCall C Q

(r,ret)

Y¥~

N

b ~/

Figure 5.11: The refinement of the protocol automata P and with the im-
plementation automaton @ of routine r inlines @) into P (Ip«g) and removes
the node of the original call.

N .
callRet Q N N T @

e Treg=(TpUTy) \{(s,a,5) € Tp | s =inCall; vV s = inCall;}
U{(callStart;, T, 54™), (sg"al, 7, callRet;)}. For the call site i, T transi-
tions to the initial state of @), as well as T transitions from the final
states of QQ to the the return of the call are added.

Remark: At each call site, a separate copy of the implementation
automaton of the routine is inlined, as we inline one call site after
the other.

In other words, the refinement of a protocol automaton by the imple-
mentation automaton of a routine inlines a copy of the implementation au-
tomaton wherever there is a call to this routine in the protocol automaton.
The resulting automaton is the basis for verification and semantic assistance
presented in Chapter 6 and Chapter 7.

Figure 5.11 shows the refinement of the protocol automaton P by the
implementation automaton of the routine (). The implementation automaton
is called @), therefore the refinement can be denoted as Ipq.

78

CHAPTER 5. IMPLEMENTATION AUTOMATON

Chapter 6

Verification Approach

This chapter presents the verification algorithm developed as a central part
of this thesis. The results of this algorithm are the basis for the end-user
assistance tools presented in Chapter 7.

Section 6.1 gives an overview of the approach. The description of the
verification algorithm is split into 4 main parts. Section 6.2 introduces the
basic verification algorithm that establishes a mapping between a component
implementation and the protocol contracts of its subcomponents. Section 6.3
presents the operators chosen for the knowledge update between states in
the implementation automaton. Section 6.4 introduces constraint checking,
while Section 6.5 explains how unreachable states can be found. Finally, Sec-
tion 6.6 presents how a component contract is checked against the component
implementation.

6.1 Overview

The application of the verification algorithm is depicted in Figure 6.1. First,
an automaton is created (as outlined in Chapter 5) which represents the im-
plementation of a MONACO component with the control flow and the routine
calls to its subcomponents (1). Then, a weak simulation relation is used to
set up a mapping (3) between the states in the implementation automaton
and the states in the protocol automata of the contracts (2) of the sub-
components. In the same step, the states of the implementation automata

79

80 CHAPTER 6. VERIFICATION APPROACH

Impl. Automaton
¥ Semantic

Errors

—~
—_
~—
—~
ot
~—

MONACO

Proposal

\

(t) State Mapping) — ? (
_— ?/ Repair
/ Annotated N8

Impl. Automaton
— Visualization

~J
~ ¥ ~—

Contracts
Constraints

Protocol Automata

Figure 6.1: State mapping overview.

are associated with knowledge in the form of propositions derived from the
propositions in the protocol automata and the conditional statements in the
implementation. Finally, the state mapping and associated knowledge is used
to verify constraints.

The annotated implementation automaton (4) is then used in various
end-user support systems as follows:

e Reporting semantic errors (5) : The system gives feedback about vio-
lations of contracts and or constraints. The feedback is shown at the
respective error positions in the editor.

e Proposing valid calls (6): Based on the contracts of the subcomponents
and constraints between components the system proposes valid routine
calls.

e Proposing semantic program repair (7): Component violating contracts
or constraints can be changed such that the program complies with
the contracts and constraints. This system gives proposals on which
changes are necessary to repair a component.

e Visualizing component state (8): The system uses the state mapping
results at a specific location in the code to visualize the state of the
subcomponents at this exact location.

Those end-user support systems will be subject of Chapter 7.

6.2. STATE MAPPING 81

6.2 State Mapping

This section introduces the state mapping algorithm for establishing a simula-
tion relation between a component’s implementation automaton and the pro-
tocol automata of its subcomponents. Section 6.2.1 introduces weak simula-
tion relations. Section 6.2.2 discusses the principal approach and Section 6.2.3
presents the state mapping algorithm. Finally, Section 6.2.4 concludes with
an example.

6.2.1 Weak Simulation

A simulation between automata describes that each transition in one auto-
maton has a counterpart in the second automaton. The automata are said
to have similar behavior (the second automaton may have more behavior).

A weak simulation [Bie08,Mil89] is a simulation disregarding unobservable
internal events (7-transitions).

Definition 6.1 Let sp, s be states of the automata P and (), then a weak
simulation relation S between these states is defined as follows: sp < sg <

Va € Ap\{7},s € Sp : (sp T*—a>3};:> Jsin € Sq (5 e, so N sp S sg))
where the notation s — s’ stands for 3(s,a,s') € T and s == s’ stands for

s 5 Sy = ... 5 8, — 5. An automaton Q weakly simulates an automaton
P iff the initial state of Q weakly simulates the initial state of P: sp" < s¢i™.

Weak simulation is often used to verify an implementation against its
specification. If implementation < specification the implementation’s be-
havior is a subset of the behavior allowed by the specification.

6.2.2 Approach

The weak simulation described above can be used to verify the implemen-
tation of a component against the sequencing constraints specified by the
protocol automata of its subcomponents. In order to be able to describe the
weak simulation between the implementation automaton and a protocol au-
tomaton of a subcomponent, we need to ignore all transitions resulting from

82 CHAPTER 6. VERIFICATION APPROACH

cl.rl! cl.rl!ﬁ>

(@)
cl.rl? cl.rl?
O}
027”4' \\ T * \\
O T T
c2.r4? //I 7’?1/’
(@)
cl.r2! cl.r2!
Cl.TQ?T cl.r2?
@) @)
TA TA/PA,4

Figure 6.2: Statemapping projection of the implementation automaton on
the protocol automaton of component ¢l (PA.).

calls to other subcomponents. We simply replace these irrelevant transitions
by 7-transitions and call this a projection of the implementation automaton
on the protocol automaton of a specific component.

Definition 6.2 We define the projection of an implementation automaton
TA = (Spa, st Apa, s, Tya) on a protocol automaton PA = (Spa, sB¥,
APA,S};ZW,TPM as an automaton TA/PA = <S]A,$Zﬂ4it,ApA,S{ZLGI,T[A/IDA>
where Trajpa = {(s,a,5") € Trala € Apa} U{(s,7,5)|(s,a,5") € Tiana ¢

Apal.

This definition guarantees that all transitions in the resulting automaton
are labeled with actions valid in the protocol automaton PA. The example
in Figure 6.2 shows how projection replaces transitions involving subcompo-
nents other than PA by 7-transitions.

In the state mapping algorithm we establish a weak simulation relation
between the implementation automaton and each of the subcomponent proto-
col automata. Therefore a component C' complies with the protocol automata
of its subcomponents iff Vi : (IA/PA;) S PA,.

Definition 6.3 We define the mapping M of states of the implementation
automaton to states of the subcomponent protocol automata as M : S;y —

6.2. STATE MAPPING 83

TR S o 5
rl! cl.rl! cl.rl! Ty

O o O O v Qe]
r1? cl.rl? cl.rl? T(P OT4|
() ()\ () .
rol T c2.r4l |\ c2.r4! | 47
() N N 1 AU () P T T . I| T. ()
r2? Ty c2.rd4? | s c2.r4? v 5
A OF v (?" 5 :
r3! clir2! cl.r2! T 57
O W o ¢ |
r3? clr2? cl.r2? Ty
o) © e © e ©)
PA, ITA/PA, IA TA/PA. PA,

Figure 6.3: State mapping results with projection of the implementation
automaton I A on the protocol automata of component ¢l (PA.).

P(xSpa;). xSpa, denotes the cross product of the states of all subcompo-
nents. Thus, this mapping relates a set of vectors of subcomponent states
to a state of the implementation automaton. One such vector describes the
state of all subcomponents. If multiple vectors are in the set, then the system
can be in different states when execution reaches the state implementation
automaton.

Let s;4 be the current state in /A and spy, be the current state in
the subcomponent protocol automaton PA,;. Assume, a transition t;4 =
(Sra,a,s74) € Tra,a # T exists in the implementation automaton. In order
to have a weak simulation relation, a similar transition possibly reachable
by intermediate T-transitions (sp4,, a, sp4,) € Tpa, needs to exist in the cor-
responding protocol automaton. If so, a mapping between s;, and s, is
established: M(s},) = M(s74) U{(spa,,--,8pa,»--->5Pa,)}

Figure 6.3 shows the result of the state mapping of an implementation
automaton and two protocol automata for the subcomponents ¢l and 2.
For reasons of clarity, the projection automaton will be omitted from figures
henceforward.

84 CHAPTER 6. VERIFICATION APPROACH

6.2.3 Algorithm

This section outlines the algorithm implementing the state mapping approach
described above. The algorithm applies depth-first search (DFS) to find con-
tract violations and annotates the states of the implementation automaton
with mapping information.

Instead of establishing the weak simulation for each subcomponent sepa-
rately, the algorithm does the projection on the fly. This allows the algorithm
to establish the weak simulation in one depth-first search traversal of the im-
plementation automaton. Moreover, rather than using the application stack
by recursion, this algorithm is implemented iteratively, thus maintaining a
separate stack of search positions. A search position holds a situation identi-
fied by a state in the implementation automaton and a corresponding state
for each subcomponent, protocol automaton. The search positions are con-
nected through references to a predecessor search position, such that it is
possible to follow the execution path leading to a certain state.

Definition 6.4 A search position holds information about a state s of the
implementation automaton as well as the mapped states of the subcom-
ponent protocol automata. A search position therefore is a tuple SP =
(s, (t1,...,tn)), where

o s € Sra is a state of the implementation automaton.

o (t1,...,t,) defines the subcomponent mapping, the active states in the
subcomponent protocol automata. For each subcomponent there is one
state in which this component is in this situation (t; € Spa,).

A pseudo-code version of the algorithm is shown in Figure 6.4. The algo-
rithm starts by assuming a mapping between the initial state of the imple-
mentation automaton s and the initial states of the subcomponent pro-
tocol automata ¢! (line 1). While the search stack is not empty, the top
search position is removed from the stack (line 3) and the (call- and return-)
transitions leaving the implementation state s of the search position are veri-
fied to exist in the corresponding subcomponent protocol automaton. If such
a transition exists, the mapping between the successor in A and the succes-

sor in the subcomponent protocol automata is established (lines 12 and 19).

6.2. STATE MAPPING 85

© ® N O Ok W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Input: implementation automaton, subcomponent protocol automata
Result: annotated implementation automaton, list of violations

push(s™it (¢t ginit))
while search positions on search stack do
<Sv (tla S >t7L)> = pOp()
foreach a such that 3s' : (s,a,s") € T14 do
if a7 AN—-3i:(t;,7%a,t') € Tpy, then
‘ violation detected at state s
end
foreach s such that (s,a,s’) € Tra do
if a =7 then
if (t1,...,t,) € M(s') then
push(s', (t1,...,tn))
‘ M(s") = M($)U{(t1,...,tn)}
end
continue
end
foreach t; such that (t;,7*a,t;) € Tpa, do
if (t1,...,t,...,t,) ¢ M(s') then
push(s', (ti, ..., th, ..., tn))
‘ M(s") = M()U{(t1,...,t, ..., 1)}
end
end
end
end
end

Figure 6.4: DF'S verification algorithm.

If the same mapping did not already exist, a new search position with the

new successor of the transition in the implementation automaton and the
new state mapping is pushed on the search stack (lines 11 and 18). If no such
transition exists, a violation has been found (line 5). These steps are repeated

until a mapping for each state has been found, or a violation is detected.

State mapping violations are due to invalid transitions in the implemen-

tation automaton. We can reconstruct a path leading to this violation using
the search position chain. Each search position links to the search position
causing this situation. Thus, the search positions can be seen as path lead-

86 CHAPTER 6. VERIFICATION APPROACH

11

17

Figure 6.5: Driller and cooler component.

SUBCOVPONENTS
c : |Cooler;
d: IDiller;

ROUTI NE drill()

BEG N
c.start();
d.start();
WAI T d. rpnReached();
d. down();

d. up();
END

Listing 6.1: Partial implementation of the driller component.

ing from the initial state of the implementation automaton to the contract
violation.

6.2.4 Example

Consider a driller machine like the one shown in Figure 6.5. The machine
consists of two subcomponents, a driller and a cooler. Contracts exist for
the interfaces of the subcomponents | Dri || er and | Cool er, describing
allowable usage patterns of the components. The driller machine could use
its subcomponents like shown in Listing 6.1.

We can now apply the state mapping algorithm to the implementation
automaton of the driller machine and the protocol automata of its subcom-
ponents. The result of the state mapping algorithm is depicted in Figure 6.6.

6.3. KNOWLEDGE UPDATE 87

+ IDriller -

t . o, .

“e.start! -c.start?’ d.start! ‘d.start?: d.down! gd.downv?-_ d.up! . dup7
—@ © ® © hd ® o ® ©

. CFC :d.rpmReached()

F ICooler 4

Figure 6.6: Result of the state mapping algorithm of the driller component.

The upper part shows the protocol automaton for the | Dri | | er interface,
the lower part shows the protocol automaton for the | Cool er interface.
In the center, the implementation automaton for the code in Listing 6.1 is
shown. Dotted lines highlight the state mapping relation M.

6.3 Knowledge Update

While the algorithm described in Figure 6.4 establishes a weak simulation
relation, the propagation of knowledge in the implementation automaton
has been omitted so far. This section will detail on situational knowledge,
knowledge update and retraction, and we will present an extended state
mapping algorithm propagating knowledge.

Situational knowledge is created from knowledge obtained from the pro-
tocol automata (see Pre, Post, and Initial functions in Section 4.3) and the
implementation automaton (see CF'C' function in Section 5.1). Furthermore,
we can use the function Retract from protocol automata to remove invalid
knowledge. We use these propositions to annotate each reachable state of the
implementation automaton with situational knowledge (similar to [Rei01]).
The term situational knowledge refers to the fact, that a state in the imple-

+ Implementation 4

88 CHAPTER 6. VERIFICATION APPROACH

mentation automaton may be reached through different paths in the imple-
mentation automaton, thus resulting in different knowledge and a different
mapping of subcomponent states.

When a transition is taken, the situational knowledge of the source state is
transferred to the target state of the transition. It is then updated with new
information (from protocol automata) while keeping the situational know-
ledge consistent (i.e. the conjunction of all terms in the knowledge base must
be satisfiable). We have adopted techniques introduced in artificial intel-
ligence called belief update [KM91, HR99| and employed the SMT solver
Yices [DAMO06] to add and remove new information without introducing in-
consistencies.

6.3.1 Knowledge Change Operators

We introduce a knowledge update operator (cf. Section 2.3.3) consistent with
Winslett’s standard semantics [Win90] (cf. Section 2.3.4). In contrast to belief
revision, a belief update operation changes a knowledge base due to a change
in the real world. The operation therefore may remove existing information
from the knowledge base in order to keep the knowledge base consistent.

Definition 6.5 Let K be the knowledge base consisting of a set of logical
propositions k € K and ¢ a logical conjunction describing new information
about the world. Inv denotes the conjunction of invariant propositions. The
knowledge update operator ¢ is then defined as follows:

Koc={k e K |-sameSym(k,c) A sat(k N c A Inv)} Uc.

The predicate sameSym is true, iff the two propositions have at least
one atom (symbol) in common. The predicate sat proves satisfiability of a
proposition and is computed by an SMT solver.

Remark: We have chosen the SMT solver Yices [DAMO06] as an
efficient decision procedure for satisfiability of arbitrary formulas.
Additionally it provides a simple input language which can be
used in interactive mode.

Figure 6.7 shows the algorithm for the knowledge update in pseudo code.
Each condition in the knowledge base is tested whether its symbols intersect

6.3. KNOWLEDGE UPDATE 89

with symbols contained in the new knowledge (line 3). If so, the condition is
removed from the resulting knowledge base. Otherwise, the condition is tested
whether it contradicts the new information and the invariants (line 5). If so,
the condition is also removed from the resulting knowledge base. Finally the
new information is added to the knowledge base (line 9).

Input: existing knowledge K, new information ¢, invariants Inv
Result: new knowledge base K’
K =K
foreach k € K do
if sameSym(k,c) then
| K':=K'\{k}
elsif —sat(k A c A Inv)) then
| K':=K'\{k}
endif
end
K':=K'U{c}

© 0 N O oA W N o=

Figure 6.7: Pseudo code defining the knowledge update operator.

Similarly, an operator for information retraction can be defined. The se-
mantics of retraction is that retracted knowledge can not be guaranteed to
hold any longer. It therefore needs to be removed from the knowledge base.

Definition 6.6 Let K be a knowledge base as above, and f a symbol to be
retracted. The knowledge retraction operator & is then defined as follows:

K&f={ke K |-sameSym(k, f)}.

Remark: Knowledge retraction differs from adding contradicting
information, in that it does not generate additional information,
but strictly removes any knowledge about certain symbols.

These knowledge operators are used in the state mapping algorithm to
generate knowledge while establishing the weak simulation relation. The re-
sult of this state mapping algorithm including knowledge update is an an-
notated implementation automaton, where each reachable state is annotated
with a list of situations. Fach situation contains the subcomponent protocol
automata mapping as well as a set of propositions known to be true in this
situation. Section 6.3.3 gives a detailed definition of situations.

90 CHAPTER 6. VERIFICATION APPROACH

6.3.2 Example

In the following examples different cases for knowledge update in the state
mapping algorithm are illustrated.

Adding Knowledge Based on Protocol Automata

Assume we have a subcomponent cooler of interface | Cool er with the pro-
tocol automaton as defined in Figure 6.8, left column. The subcomponent
is used as shown in Listing 6.2, the corresponding implementation automa-
ton is depicted in Figure 6.8, right column. Dotted lines represent the state
mapping relation.

SUBCOMPONENTS
| Cool er c;
IDriller d;

ROUTI NE mai n()

BEG N
c.start();

END

Listing 6.2: Example code generating knowledge from a protocol automa-

ton.

The first part of Figure 6.8 shows the first mapping between the pro-
tocol automaton and the implementation automaton: the initial states are
mapped and the mapping is annotated with the initial knowledge K =
{=c.isCooling, ~d.isStarted}. Next, the transition c.start! in the implemen-
tation automaton is chosen as the only transition from the current (initial)
state in the implementation automaton. The same transition (though with-
out the subcomponent prefix c.) exists in the protocol automaton for the
| Cool er subcomponent c. Therefore, a mapping between these two succes-
sor states is established, the knowledge is not yet changed (since postcon-
dition information is added to the knowledge as soon as the state holding
the postcondition is left). The knowledge associated with this new mapping
therefore remains K = {—c.isCooling, ~d.isStarted}.

Finally, the next transition c.start? is taken and its counterpart in the
protocol automaton is followed. The postcondition of the state in the protocol

6.3. KNOWLEDGE UPDATE 91

Post : isCooling()
start! start?

K = {—c.isCooling,~d.isStarted}

Init : _)

—tsCooling()
stop? stop!
Post : =isCooling()

Post : isCooling()
start! _ stcmf

—

......... K = {—c.isCooling,~d.isStarted}

IR

. Start'
Init : = {=c.isCooling, —d.isStarted}
—isCooling() C Sta,’ot{?
stop? stop! @
Post : =isCooling() v
Post : isCooling() l
start! _ starﬁ

IR

......... Cf K = {—c.isCooling,~d.isStarted}
(l) K = {—c.isCooling, —~d.isStarted}

mit: > Q)

—isCooling() o C. St&?”ﬁ

stop? stop! 'Q K = {c.isCooling, ~d.isStarted}

Post : =isCooling() v

Figure 6.8: Verification process: state mapping and knowledge generation
from protocol automaton.

automaton is used to update the current knowledge. Thereby, the proposition
—c.isCooling is removed because it shares symbol isCooling with the new
proposition c.isCooling. Finally the new proposition is added to the know-
ledge base giving K = {c.isCooling, ~d.isStarted}. Repeated execution of
the code can lead to new mappings of implementation states to the same
states in the protocol automaton (even with different knowledge). Similarly,
one state in the implementation automaton can be mapped to multiple states
in the protocol automaton (possibly with different knowledge per mapping).

Adding Knowledge Based on WAIT / IF

This example illustrates how information from the implementation automa-
ton is used in the verification process and how preconditions are verified.
Figure 6.9 shows the implementation automaton for the code snippet in List-
ing 6.3, where the system waits for the driller component to have reached
full speed, before the driller lowers.

92 CHAPTER 6. VERIFICATION APPROACH

BEG N

WAI T d. rpnReached();
d. down();

END

Listing 6.3: Example code generating knowledge from the implementation
automaton.

Figure 6.9 shows the protocol automaton of the | Cool er subcompo-
nent on the left, the protocol automaton of the I Drill er subcompo-
nent on the right, and the implementation automaton for the code snip-
pet in the center. Assume, the knowledge at the state of the CFC' con-
dition is K = {c.isStarted, d.isStarted}. Before the transition d.down! is
taken in the implementation automaton and the protocol automaton for the
I Driller interface of the subcomponent d, the knowledge is immediately
updated with the C'F'C' condition. The temporary knowledge therefore is
K = {c.isStarted, d.isStarted, d.rpmReached}.

Next, the precondition of the successor state in the protocol automaton
of IDrill er is verified. Since K A —~Pre is not satisfiable, the precondition
d.rpmReached is satisfied, the transition d.down! is taken, and the mapping
between the two successor nodes is established. The knowledge in the second
implementation state is then K = {c.isStarted,d.isStarted}. It lacks the
function symbol d.rpmReached, because this knowledge can no longer be
guaranteed as it does not stem from a contract guarantee, but from a WAI T
statement, and the system may have changed due to the routine call.

Remark: The SMT solver can only show satisfiability or un-
satisfiability of formulas. Therefore, a precondition is fulfilled, if
its negation is unsatisfiable under a certain knowledge. It does
not suffice to show that the precondition and the knowledge are
satisfiable.

Retracted Knowledge Based on Protocol Automata

This example shows how retraction of information from existing knowledge
can be used. Figure 6.10 shows the section of the implementation automaton

6.3. KNOWLEDGE UPDATE 93

Post : isCooling() Post : ~isDrilling()

u ‘ ? ost : isDrillin
start! start? p- . down? post:isDriting

Pre : rpmReached()

C

CFC : y d.rpmReached
mit: —@ O R R o up? down!
—isCooling() ddown StCLTt' . S-t(l?“t 7 Stop! Stop"/
‘ J J J
StOp? Stop. Post : isStarted() Post : misStarted()
Post : ~isCooling() ¢
Post : isCooling() Post : ~isDrilling()

up' down? Post : isDrilling()
O ——)Pre: rpmReached()

L

start! start? \
(/O\ CFC : ¥ d.rpmReached .-
Init: —> oY T up?
—isCooling() \O/) ddown' ? TR N taTt| o start 3 StOp' stop/
Hole O——=%5 o o

Stop? StOp! Post : isStarted() Post : misStarted()
Post : ~1sCooling() ¢

Figure 6.9: Verification process: state mapping and knowledge generation
from implementation protocol.

for the code snippet in Listing 6.4, where the system starts the close move-
ment of a cylinder, waits for the cylinder to be closed, and then stops the
movement.

The protocol automaton for the interface I Cyl i nder of the cylinder sub-
component states, that as soon as a movement is started, no conclusion about
the state of the subcomponent can be drawn (Retract : isOpen,isClosed).
Assume, we have the knowledge K = {cyl.isOpen} when the verification
process arrives at the first state of the implementation automaton shown in
Figure 6.10.

BEG N

cyl.startd ose();
WAI'T cyl .isCl osed();

cyl .stop();

END

Listing 6.4: Example code showing retraction of knowledge.

When the transition cyl.startClose! is taken, it leads to a state in the
protocol automaton which is annotated with a set of symbols to retract. All
propositions involving retracted symbols are removed from the knowledge.
In the example, the proposition cyl.isOpen is removed from the knowledge
and an empty knowledge remains (K = {}). In the next step, temporarily

94 CHAPTER 6. VERIFICATION APPROACH

|
startClose! (*)K = {cyl.isOpen}
© | eyl.startClose!

startOpen!

Retract : isOpen, isClosed Retract : isOpen,isClosed, "’

@)
cyl.startClose?

CFC :
cyl.isClosed()
’ cyl.stop!
O
cyl.stop?
startOpen! startClose! Q
Lt ¢
|
startOpen! startClose! g)K = {cyl.isOpen}
Retract : isOpen, isClosed Retract : isOpen, isClosed, - - CylSt@TtClOS@'
o L 0K = {3
\ cyl.startClose?
CFC :
. cyl.isClosed()
startClose; cyl.stop!
O
cyl.stop?
startOpen! startClose! ?
V
|
¥ .
startOpen! startClose! QK ={cyl.isOpen}
Retract : isOpen, isClosed Retract : isOpen, isClosed. " - Cyl.staTtOlose!
[N UL OK =)

cyl.startClose?

.......... . ~¢yzg§66‘}éée'd'(j()[(= {}
"""" P cyl.stop!

O

cyl.stop?

startOpen! 2 startClose! ?

Figure 6.10: Verification process: state mapping and knowledge retraction.

new knowledge is added from the C'F'C' condition of the implementation. The
temporary knowledge thus is K = {cyl.isClosed}. This knowledge stemming
from the C'F'C' condition would only be used if there were a precondition in
the protocol automaton. Since there is no precondition, the CF'C' condition
is not used and the empty knowledge K = {} remains.

6.3. KNOWLEDGE UPDATE 95

|
,,,,,,,,,, S K= {v.isClosed}
............ v.open!
e O K = {v.isClosed}
NP v.open?
S Post + isClosed() QK = {v.isOpen}

Post : isOpen()

P v.closel
S Lo O K= {7v.i30pen}
- close! .. | wv.closet

(|) K = {v.isOpen}
v

Figure 6.11: Verification process: knowledge update with invariants.

Knowledge Update with Invariants

This example shows how invariants influence the result of knowledge update.
Assume, we have a valve subcomponent which can be opened and closed
(atomic routines open() and close()). The functions declared in the interface
of the valve subcomponent are isOpen and isClosed which can never be true
simultaneously. We describe this dependence using the invariant —(isOpen A
isClosed)(the preceding — can be read as never).

Listing 6.5 shows an example code which uses the valve subcomponent.
The corresponding implementation automaton is shown in Figure 6.11. The
interesting part of the knowledge update is in the third state of the im-
plementation automaton. The knowledge from the previous state is K =
{v.isClosed} and the new information from the postcondition is v.isOpen.
The knowledge update step generates the final knowledge K = {v.isOpen}
by removing v.isClosed because v.isClosed A\v.isOpenA—(isOpenAisClosed)
is not satisfiable.

BEG N

v.open();
WAI T 1000;
v.close();

END

Listing 6.5: Example code for knowledge update with invariants.

96 CHAPTER 6. VERIFICATION APPROACH

6.3.3 Algorithm

Figure 6.12 gives the full pseudo code of the state mapping algorithm, in-
cluding knowledge update operations. The following adaptations need to be
made to the state mapping algorithm:

e The mapping is changed to map sets of situations to implementation
states. A situation is a tuple Situation = ((t1,...,t,), K). The new
mapping therefore is M : S;y — P(Situation). New situations are
added to the mapping as they occur (lines 14 and 25).

e A new element K representing the set of propositions on subcompo-
nents valid in the implementation automaton is added to the search
position. Therefore, it is now defined as SP = (s, (t1,...,t,), K).

e Unsatisfiability of control flow conditions need to be checked (line 9).

e New information from control flow conditions needs to be added to the
knowledge (line 10).

e Knowledge needs to be retracted, if specified in the protocol automata
(line 8).

e Knowledge from WAI T statements needs to be retracted as soon as it
is not valid any more (line 21). This is the case, as soon as the next
non-atomic routine is called after the WAI T statement.

e New information from the protocol automata needs to be added to the
knowledge (line 19).

e Constraints need to be checked whenever a new mapping is generated
(line 22). This is the subject of the next section.

6.4 Constraint Checking

Constraints are checked in the state propagation algorithm in every situation
encountered (line 22). A constraint is satisfied, iff the current knowledge
contradicts the negated constraints, i.e., if there is no possibility that the
current knowledge and an invalid state (as described by constraints) coincide.

6.4. CONSTRAINT CHECKING 97

Input: implementation automaton, subcomponent protocol automata
Result: annotated implementation automaton, list of violations

1 push(s™* (¢t ¢t |, Initial (P A;))

2 while search positions on search stack do

3 (s, (t1,. .. tn), K) := pop()

4 foreach a such that 3s' : (s,a,s") € T14 do

5 if a7 AN—-3i:(t,7a,t') € Tpy, then violation detected
6 foreach s such that (s,a,s’) € Trs do

7 let PA; such that 3t : (t;,7%a,t') € Tpa,

8 K':= K®Retract(t;)

9 if —sat(K' ANCFC(s')) then continue with line 6

10 K':= K'o CFC(s)

11 if a =7 then

12 if mapping is new then

13 push(s', (t1,...,t,), K')

14 M(s") = M(s")U{((t1,...,tn), K')}

15 end

16 continue with line 6

17 end

18 foreach ¢, such that (t;,7*a,t;) € Tpa, do

19 K" := K’ ¢ Post(t;)

20 if sat(K” A Inv A —Pre(t;)) then violation detected
21 K" .= K"¢4invalid WAIT knowledge

22 if sat(K" A Inv A ~Constr) then violation detected
23 if mapping is new then

24 push(s', (t1,...,t ... tn), K")

25 M) = M) UA{((tr, ... th .), K")}

26 end

27 end

28 end

29 end

30 end

Figure 6.12: DFS verification algorithm with knowledge update.

W N

~N O Ot i~

98 CHAPTER 6. VERIFICATION APPROACH

CONSTRAI NT (I Cool er cooler, IDriller driller)
[NOT (driller.isStarted() AND NOT cooler.isCooling())]

Listing 6.6: Driller/Cooler constraint.

(define cooler isCooling ::bool)

(define driller isStarted::bool)

(define constraint ::bool (not (and driller isStarted (not«
cooler isCooling))))

assert cooler isCooling)

assert driller isStarted)

assert (not constraint))

(
(
(
(check)

Listing 6.7: Yices input for checking a constraint.

Definition 6.7 More formally, a constraint is violated, iff
sat((—=Constr) A invariants A\ knowledge)

In order to solve this SAT problem, again the SMT solver Yices [DAMO06]
is used. The satisfiability problem is translated into the input language of
the SMT solver, which in turn returns either satisfiable or unsatisfiable.

Assume we have to check the constraint in Listing 6.6. The situational
knowledge is cooler.isCooling() Adriller.isStarted() and there are no invari-
ants. The SAT problem for checking the constraint reads as follows:

sat(—=(driller.isStarted() A —cooler.isCooling()) A cooler.isCooling() N
driller.isStarted())

The input for Yices for this satisfiability problem is listed in Listing 6.7.
Lines 1 and 2 declare the two boolean symbols used in the constraint and
the knowledge. Line 3 defines the constraint and lines 4 and 5 assert the
knowledge. Line 6 asserts that the constraint is violated, which needs to be
unsatisfiable. The last line executes the check command which checks the
previous commands for satisfiability and either returns sat or unsat.

The given SMT problem is unsatisfiable, since —cooler.isCooling() and
cooler.isCooling() can not hold simultaneously. Hence, the check command
returns unsat and the constraint is not violated. If the SMT solver reported
satisfiability of the problem, we would have found an instance of constraint
violation.

© 00 ~ O O = W N =

el e e
=~ W N = O

6.5. REACHABILITY ANALYSIS 99

6.5 Reachability Analysis

Reachability analysis aims at finding code which is unreachable and thus is
either superfluous or flawed. Unreachable code is also often called dead code.
It seems natural to extend static analysis to find such code, since the state
mapping algorithm already does most of the static analysis needed. What
remains to do for a reachability analysis is to analyze the results of the state
mapping algorithm.

The analysis is done by checking the states in the annotated implemen-
tation automaton having a control flow condition (from | F or WHI LE state-
ments). Each such state must have at least one situation in which the control
flow condition is established, in order to be executable. If there is no situation
in which the condition holds, an unreachable state has been found.

BEG N
cool er.start()
driller.start();
WAI'T driller.rpnmReached();
| F NOT cooler.isStarted() THEN
BEG N // unreachabl e code bl ock
cooler.start();
END
driller.down();
driller.up();
END

Listing 6.8: Unreachable code.

Listing 6.8 shows a MONACO code block containing unreachable code.
The unreachable code is the block starting at line 7. It is caused by the
preceding | F statement which has a condition that will never be true due
to the postcondition knowledge gathered by the call to cool er. start ()
in line 2. The result of the verification and reachability analysis is shown in
Figure 6.13.

100 CHAPTER 6. VERIFICATION APPROACH

~
S s /& /s
< o bQ > o >
§3 3 N & S
ISR S & s S
F s T % 4 N
NS % g)) .2
S 3 & Z > >
§ 3 3 S > ©
}
(@)
c.start!
(@)
c.start?
. [}
d.start!
. [}
d.start?
. C
CFC : |
d.rpmReached()
Q R
: \\\CFE:;,:isStaTted() \
|
: - | F condition
T c.start! contradicts the
: knowledge.
| c.start?
¥
° [}
d.down)!
° L4 ®
d.down?
O . *)

Figure 6.13: Unreachable code due to unsatisfiable | F condition.

6.6. CHECKING COMPONENT CONTRACTS 101

6.6 Checking Component Contracts

Recall from Section 3.2.3 that the component structure forms a strict hier-
archy. The verification for one component relies on the contracts of its sub-
components and assumes that its routines are called as required by its own
contract. This kind of reasoning is referred to as assume-guarantee reason-
ing [HMPO1]. To be sound, the component implementation has to guarantee
that it fulfills the postconditions specified in its contract. This will be outlined
in the following.

6.6.1 Checking Component Postconditions

As described above, a component has to guarantee, that it fulfills the post-
conditions specified in its contract. We can check this by adding the post-
conditions of the contract of a component to the implementation automaton,
when the component routines are inlined (see Section 5.3).

The only problem is, that the postconditions of the component are stated
in terms of function symbols of the component itself, while the conditions
used in the knowledge update procedures are stated in terms of the function
symbols of the subcomponents. This can be solved by analyzing the code
of the functions used in these postconditions. These functions essentially re-
turn aggregated states of their subcomponents. Thus, they consist of a single
RETURN statement with a condition composed of subcomponent function
symbols. This exact condition is then used within the new postcondition.

Figure 6.14 gives an overview of the process: the postcondition x of the
routine call a (left) is added to the implementation automaton of the routine
a(). Since the symbol z is a function of the component and not of one of its
subcomponents, the contents of the function x are used. Let’s assume the code
of the function x is RETURN s1.y() OR s3.z(). The postcondition is
then s1.yVs3.z and added to the last state of the implementation automaton
(right).

In the state mapping algorithm the actual check for compliance with the
postconditions of the component’s contract has to be done after line 19 (see
algorithm in Figure 6.15). The check verifies that the knowledge (K”) implies
the parent postcondition. If this check fails, the component does not fulfill

102

CHAPTER 6. VERIFICATION APPROACH

| s1.rl! sl.r1? | s1.rl! s1.r1?

al s2.1r2! s2.1r2!

Post : z()
G?T TSQ.’/’Q? TSQ.TQ?

? Post : sl.y() V s3.z()

53.7r3! 53.13!

Protocol Automaton Implementation Implementation

[Component Automaton for a() Automaton for a()

Figure 6.14: Postconditions of the component’s contract are transferred
to their implementation automaton. The postcondition is thereby stated in
terms of subcomponent function symbols.

its contract.

20
21
22
23
24
25
26
27
28
29
30

foreach t; such that (t;,7*a,t;) € Tpa, do
K" := K' ¢ Post(t;)
if sat(K” A Inv A —~Post(s")) then violation detected
if sat(K” A Inv A —Pre(t})) then violation detected
K" := K"¢&invalid WAIT knowledge
if sat(K"” A Inv A ~Constr) then violation detected
if mapping is new then

push(s', (t1,...,t ... t,), K")

M) = M) U{((t1,...,t ... t,), K")}
end
end

Figure 6.15: Part of the DFS verification algorithm. Line 22 checks whether
the postcondition of the component’s contract is fulfilled.

6.6.2 Checking Unchanged State Properties

The check described in Section 6.6.1 above guarantees that postconditions
are fulfilled. In addition to postconditions, there is a second assumption that
we use when updating knowledge in the state mapping algorithm: knowledge
gained from postconditions remains true, until it is invalidated (by another

postcondition, or by knowledge retraction).

6.6. CHECKING COMPONENT CONTRACTS 103

We can verify this assumption by checking that the knowledge at com-
ponent routine calls only change state properties of the component, if these
changes are specified in the routine’s postcondition.

104 CHAPTER 6. VERIFICATION APPROACH

Chapter 7

Semantic Assistance

1
Syntax is what you see,

semantics is what you
have to find out.”
- Anonymous

This chapter introduces techniques to assist end users in programming.
These techniques exploit the verification approach as presented in Chapter 6.
Section 7.1 presents an algorithm for searching for proposals that suggest how
a MONACO program can be legally extended or modified at a specific loca-
tion. Section 7.1.2 shows how these proposals can be used to build interactive
end-user support tools. The same algorithm forms the basis for the seman-
tic program repair approach (Section 7.2), which fixes components that are
invalid with respect to their contracts. The last section of this chapter (Sec-
tion 7.3) presents a program visualization tool that can show and animate
the state of components during programming.

The term Semantic Assistance is derived from the Eclipse term content
assist, a facility that provides programmers with proposals about what words
the user could type in the current context (cf. Section 2.1). Our approach is
to use syntactic information plus semantic knowledge (contracts) to give cor-
rect proposals (with respect to the contracts) instead of only taking syntactic
information into consideration. As introduced in Section 6.1, Semantic As-
sistance tools are based on information gathered from checking components
against contracts and constraints of their subcomponents. That means that

105

106 CHAPTER 7. SEMANTIC ASSISTANCE

it relies on the state mapping and knowledge deduction process as presented
in Chapter 6. The resulting annotated implementation automaton is used by
the tools presented in this chapter to give proposals to the end user, which
are not only syntactically correct, but also semantically valid with respect to
the semantics given by protocol contracts and constraints.

7.1 Search for Proposals

This section introduces a search procedure for finding valid routine calls for
a certain position in the source code. The procedure finds those states of the
implementation automaton that correspond to the given position in the code.
These states are then used to find a set of valid routine calls with which the
call sequence up to this point can be continued.

Definition 7.1 Let’s assume, that the state s is the implementation state
corresponding to a specific location in the source code, where we want to
compute which routine calls are allowed to occur next. We define the set of
valid routine calls as:

VC = {r | 3iV{(spay,--.,Spa,), K) € M(s) : 3s' : (spa,, 7"(r,call),s") €
Tpa, N —sat(((K#Retract(spa,)) © Post(s')) A Inv A ~Constr)

A —sat(((K#Retract(spa,)) © Post(s')) A Inv A =Pre(s'))}.

This means, that all routines are valid routines, where

1. a protocol contract PA; allows us to call the routine in any situation
((spa,,---,5pa,), K) associated with the given implementation state
s:

IV((Spay,---»Spa,), K) € M(s) = 35" : (spa,, 7(r,call),s’) € Tpa,

(for an example see Section 7.1.1)

2. the call does not violate any constraints —sat(K’ A Inv A ~Constr)
where K’ is the updated knowledge ((K'#Retract(spa,)) © Post(s'))

3. the call does not violate a precondition —sat(K’' A Inv A =Pre(s’)).

In essence, it can be regarded as simulating one step in the state mapping
algorithm starting at the mapping of the implementation state s. Note, that

7.1. SEARCH FOR PROPOSALS 107

it does not consider further steps, such that it does not recognize errors which
appear subsequently as a result of a proposed routine call.

If more than one state corresponds to the code position for which the set
of valid routine calls is to be calculated, the intersection of the valid routine
calls of the respective states is the result. We need to use the intersection,
because valid routine calls should be valid in any possible execution path
leading to the code position.

7.1.1 Examples

In the following, examples will illustrate the search for proposals in various
situations.

Valid Routine Calls at a Single State

Figure 7.1 shows an example of the application of the search for valid routine
calls after the code in Listing 7.1. In this example, we want to find out, how
we can proceed at the state s in the implementation automaton (center). The
protocol automata of the subcomponents cooler and driller are depicted to
the left and the right, respectively. The dotted lines show the state mapping
relations between the states of the implementation automaton and the states
of the subcomponent protocol automata.

Valid routine calls at the implementation automaton state s are the rou-
tine symbols at call-transitions leaving the protocol automata states mapped
to s. In our example, the routines c.stop and d.start would be valid. These
transitions are marked bold in Figure 7.1.

BEG N
c.start();
<>

END

Listing 7.1: Example code for valid routine calls.

108 CHAPTER 7. SEMANTIC ASSISTANCE

!
Post : isCooling() . Post : misDrilling() |
up: ? Post : isDrillin,
Start' . Start? -C. StaT’t‘ T p \/ down Pr: : rmeeaciLi)d()
misCooling) N o Treel, ., Start' Stop' Stop/
! @ e O J O o

StOp? Stop. Post : isStarted() Post : ~isStarted()

Post : ~1sCooling() ¢

Figure 7.1: Finding valid routine calls.
BEG N

c.start();
d.start();

IF f.pieceAtDriller() THEN BEG N
WAI' T d. rprmReached();
d. down();
END
<>
END

Listing 7.2: Example code for valid routine calls.

Valid Routine Calls with Multiple Situations

When multiple different situations can be found for a certain position in
the code, we have to use the intersection of the valid routine calls at each
situation. Listing 7.2 shows a code sample where different situations occur at
the cursor position. In this example, three subcomponents exist: a cooler and
a driller subcomponent as in the previous example, and a feeding component,
transporting workpieces to the driller.

The corresponding implementation automaton is shown in Figure 7.2
(top). It shows the state mapping result at state s in the implementation
automaton (dotted lines). Due to the two branches of the | F statement, two
different situations emerge:

e Situation 1 with knowledge
K = {c.isStarted, d.isStarted, — f.piece At Driller}

e Situation 2 with knowledge
K = {c.isStarted, d.isStarted, d.is Drilling}

7.1. SEARCH FOR PROPOSALS 109

!
R

/ N\
/ \

T
\<?3FC : f.piece AtDriller()

T
CFC : ﬁ
— f.piece AtDriller()

~

|

| T

1 CFC : d.rpmReached()

I

| d.down!

T

‘\ d.down’?

\

P

\
T
ho!
Post : isCooli Post + misDrillina()s ‘e
os' isCooling() 0 JPost isDrilling() .up| ., dowTL? Post : isDrilling()
start! start! e O Pre : rpmReached()
Init - ’ up? . down)!
~isCooling() start! _ start?™ op! _ stop!
. I O
‘ J U J
Stop? StOp. Post : isStarted() Post : misStarted()

Post : ~1sCooling()

Figure 7.2: Finding valid routine calls.

The two situations do not only differ in the associated knowledge, but
also in the mapped states of the driller protocol automaton (bottom right).
The first situation (in which the | F branch was not taken) is mapped to
the state directly after the return of the routine start. The second situation
is mapped to the state between the return of routine down and the call of

routine up.

Valid routine calls for this example per situation would then be:

e Situation 1: d.stop, d.down

e Situation 2: d.up

Since the intersection of these sets of valid routine calls is empty, no
routines can be proposed at this position. Yet, guarded proposals can be
made, which check for the active situation by proposing an | F statement
before each of the routines. Guarded proposals in this example are as follows:

110 CHAPTER 7. SEMANTIC ASSISTANCE

e Situation 1:
| F NOT f.pieceAtDriller() THEN d.stop();
| F NOT f.pieceAtDriller() THEN d.down();

e Situation 2:
|F d.isDrilling() THEN d.up();

Note, that the conditions of the guarded proposals are just the tests for
the different situations. Guarded proposals are not yet implemented in the
prototype implementation of Semantic Assistance.

7.1.2 Interactive Assistance

The functionality described above can be used to enhance existing code pro-
posal facilities. In the following, three interactive tools for semantic end-user
assistance are presented. All tools propose valid routine calls at a selected
code position.

Semantic Assist Popup

Figure 7.3 shows the proposal popup of the Semantic Assistance implementa-
tion. While the popup presents all syntactically valid routines and functions
of the subcomponent driller, it highlights those routines which do not violate
contracts or constraints.

driller.down() and driller.stop() are valid calls at the cursor position,
while driller.start() and driller.up() are invalid and therefore crossed out.
Still, also the invalid calls are shown in the popup menu and can even be
selected and inserted. This is because a program must be allowed to violate
its contracts temporarily during editing. After editing, the program is checked
again before it is downloaded to the machine. By crossing out the invalid calls
we at least indicate to the end user that a call to these routines is invalid
here. Note that calls to functions are always possible.

7.1. SEARCH FOR PROPOSALS 111

BEGIH
cooler.start() ;
driller.startc ()
driller.down();
driller.upi):
driller.
Sdown()
EHD 3 stap()
I isStarted()
I isCrillirg()
i rpmAReached)
ki

=

Figure 7.3: Semantic Assistance popup window showing valid routines and
semantically invalid routines (crossed out).

Drag-and-drop Assistance

The MONACO visual editor allows a user to insert routine calls by drag and
drop. For every component in the program there is a sidebar menu listing all
possible routine calls to this component. The user can select a call from this
menu and drag it into the code. While he moves the mouse cursor over state-
ments the positions where the selected call can be dropped are highlighted.
Valid positions are highlighted by a green plus sign (Figure 7.4(a)), while
invalid positions are marked by a red cross (Figure 7.4(b)). The state infor-
mation obtained from contracts and constraints is used to find the positions
where a call can be dropped legally. Note, that it is again possible to drop
a call also at an illegal position, thus violating the contracts of the program
temporarily.

Outline Highlighting

The Eclipse outline view shows all routines valid at the selected code posi-
tion. We have customized the outline view to show all routines that can be
called at the selected code position according to the contracts. Figure 7.5
shows a screen shot of the outline view and the visual editor with a selected
code position. The code position selected is between two statements (high-
lighted by a black rectangle), and according to the contracts, only one routine

112

() paintsupply - Spray &3 =0

[ROUTINE Spray () -/

| vColor.Open |
1

| WAIT TIMEOUT40000) |
1

Fay

| vColor.Close |

(a) Call allowed.

CHAPTER 7. SEMANTIC ASSISTANCE

=

() Painksupply - Spray 82

ROUTINE Spray () |-
| vColor.Open |

%5

| WAIT TIMEQUT(40000) |

= | O

wSalventOpen()

| vColor.Close |
1

(b) Call disallowed.

Figure 7.4: Drag-and-drop assistance in the visual editor. Figure (a) shows
that it is possible to insert the call vSolvent.Open() at the selected location
while (b) shows that it is not possible to insert it at another location.

=0

(@ Driler - dril 53
|[ROUTINE drill {) (-«

driller.start

driller.down

driller.stop

cooler.stop

5= outline 52

E driller ¢ IDviller
x skarti)
x stop()
E up()

[isStarked() s BOCL

- [isDlling() + BOOL

S rpmReached() : BOC
cooler @ ICoaoler

x start()
x stop()

o [isCoalingl) : BOCL

Figure 7.5: Semantic Assistance showing valid routines in the outline view.

(driller.up) is valid there. All other routines are crossed out.

7.2 Program Repair

Semantic errors cannot be fully eliminated by the tools presented above.
A user might need to make temporary changes to a program, turning the
program invalid. These semantic errors are indicated in the textual editor by
red underline and an error marker at the left margin. Similarly, these errors

7.2. PROGRAM REPAIR

113

W) Driller - dril 52
ROUTINE dill {)
1
21~ COMPONENT Driller IMPLEMENTS IMachine | cooler.start |
2z SUBCOMPONENTS 1
23 driller : IDriller; |dri||er.sial1 |
24 cooler @ ICooler: 1
25 .
2 68 ROUTINE drill() | driller.down |
27 BEGIN !
28 cooler.start [} | driller.up |
29 driller.starti); I
30 driller.down(); I t
31 driller.upf): coofer.stop
B3z sooler.stonils !
33 EWD drill | driller.stop |
34 EHD Driller)

(a) Semantic error in text editor.

(b) Semantic error in visual edi-
tor

[21¢ preblems £3 . & Pmpertues} 5 searcﬂ El Car\sole]

s=0

1 error, 0 warnings, 0 others

Description_~

[Resource [Location |

= @ Errors (1 kem)
%, violating Spedification (Call to coaler stopCaoling! not allowed here, Reason: Canstraint "NOT (driller.isStarted() AND NOT cocler isCoaing()) " violated.) DrilerCocler.mc line 32

Bl (|

(¢) Semantic error in the MONACO problems view

Figure 7.6: Semantic error in the MONACO text editor and the MONACO
visual editor. The error shown here is due to a constraint violation. Details
on the error are presented in the MONACO problems view.

are also shown in the visual editor, where a light bulb marks an error which
can be resolved by the procedures presented in this chapter. Additionally,
semantic errors are shown in the Eclipse problems view.

Program repair is about changing a program containing a semantic error
such that the change removes the contract violations. Figure 7.6 shows the
different visualizations for semantic errors. Figure 7.12 in Section 7.2.3 shows
the resulting repair proposals and the repaired program.

The goal of program repair is to recover from semantic errors by offering a
list of program change proposals from which the developer can choose. Those
proposals are based on the semantically invalid program and the contracts.
Selecting any of the proposals will make the resulting program semantically
valid. If a program contains more than one semantic error, the program repair
algorithm might need to be applied multiple times.

114 CHAPTER 7. SEMANTIC ASSISTANCE

7.2.1 Goals

The goals of the program repair algorithm are to provide program change
proposals that:

1. do not introduce new errors,
2. remove existing semantic errors,
3. make as few changes as possible,

4. are as close as possible to the error location.

Goals 1 and 2 are necessary goals, while goal 3 can be quantified in terms
of number of changes and an associated weight per change operation. The
weight of one program change proposal is the sum of the weighted change
operations and can be used to rank different program change proposals and
find those that make minimal changes while still fulfilling goals 1 and 2
(lower weight ranked higher). Goal 4 aims for local changes that an end
user programmer can comprehend by looking at the code where the error
occurred, without having to search through several routines.

7.2.2 Repair Strategies

The repair strategies of the program repair algorithm differ based on the
type of semantic error. The types of semantic errors that we can find are as
follows:

1. Invalid call sequence: the sequence of routine calls in the program vio-
lates the sequences allowed by the protocol automaton of a subcompo-
nent.

2. Condition violated

(a) Precondition violated: a subcomponent routine is called without
having the precondition of this call established.

(b) Constraint violated: a call to a subcomponent generates knowledge
that violates one or more constraints.

7.2. PROGRAM REPAIR 115

(c) Parent postcondition violated: at the end of a routine, the postcon-
dition of the routine in the component’s contract is not fulfilled.

Error type 1 (invalid call sequence)

The semantic errors of type 1 boil down to an invalid routine call due to
a missing transition in the protocol automaton. These errors can be fixed
by changing the transitions in the implementation automaton. The following
repair strategies can therefore be chosen:

e Insert a routine call which is valid in the contracts (weight: 2)
e Remove a routine call (weight: 3)

e Move a routine call to some other position (total weight: 1)

Error type 2 (condition violated)

Semantic errors of type 2 can only be fixed by creating new knowledge, such
that the condition currently violated is fulfilled when the repair proposals
are applied. A repair proposal therefore can consist of the following repair
strategies:

e Insert calls establishing the necessary condition (weight: 2).
e Remove a routine call (weight: 3).

e Insert a WAl T statement, if the code position is within a parallel context
or the violated condition is a precondition which can not be established
by a postcondition of a routine (weight: 1.4).

e Insert an | F statement, if there is at least one situation in which the
violated condition is satisfiable (weight: 3).
Remark: If there was no situation in which the condition can
be satisfied, there is no use in adding an | F statement, since it

would only make the error location unreachable.

© 00~ O U = W N~

116 CHAPTER 7. SEMANTIC ASSISTANCE

BEG N
c.start();
d.start();
WAI T d. rpnReached() ;
d. down();
d. up();
c.stop();
d.stop();
END

Figure 7.7: MONACO code with semantic error due to constraint violation.

The weights have been chosen such that the goals stated above are met as
good as possible. We assume, that certain mistakes are more common than
others, therefore the repair proposals for these mistakes have a lower weight.
Severe changes, like removing a routine call have the highest weight (3), since
we can assume that an end user would not add an unnecessary routine call,
but rather add it at an inappropriate location. Thus, moving a routine call
has the least weight (1). Adding a routine call (without removing the same
call at another location) has an intermediate weight (2).

7.2.3 Algorithm

The program repair algorithm uses bounded depth first search to find change
proposals. In every step of the depth first search, all repair strategies (insert
call, remove call, ...) are consulted to repair the program. As soon as a se-
quence of change actions has been found, that locally repairs the program,
this set of changes is added as a new proposal to the result. A search path
is no longer followed, if the depth has reached a certain limit, or the total
weight of the changes has exceeded a maximum weight.

In order to illustrate the algorithm, we will demonstrate it by means of
an example. The code with the semantic error can be found in Listing 7.7.
Assume, we have a constraint defining that the cooler must not be stopped
while the driller is started. The semantic error then is in line 7, where the
cooler is stopped, before the driller.

Figure 7.8 shows the part of the implementation automaton containing
the semantic error. The algorithm starts to search for program repair propos-

7.2. PROGRAM REPAIR 117

d.down! d.down? d.up! dup? c.stop!| c.stop? d.stop! d.stop?
> (N ()) (7 (D
O—@0——0—Q—0O—O—06—0O

Figure 7.8: Program repair example.

als at the state directly before the statement where the violation was detected.
In our example, this is state 5, directly before the transition c.stop!.

A fragment of the search tree is shown in Figure 7.9. For clarity, the inser-
tion of WAl T or | F statements has been omitted as possible repair actions in
Figure 7.9, because they do not lead to valid repairs in this particular exam-
ple. Dashed edges indicate continuation of the search, while check marks label
nodes with valid repair proposals. The latter nodes also contain a number
denoting the total weight of the proposal.

We will take a look at one of the search paths, specifically, at the search
path having the minimal total weight. This path is highlighted in Figure 7.9.
The search procedure starts at the root of the search graph and reasons about
changes to the implementation automaton. The first strategy consulted, is
the strategy for adding routine calls. This strategy looks at the states mapped
to the current state in the implementation automaton (state 5) and looks for
legal continuation routine calls. In state 5, calls to the routines d.down and
d.stop are valid according to the contracts. No calls to the subcomponent
cooler are valid at this position, though.

The search procedure adds new branches (first d.down, then d.stop) to
the search tree. We continue at the highlighted path in the search tree: now,
the edge d.stop is followed, we add new virtual states connected by the tran-
sitions d.stop! and d.stop? to the implementation automaton. All the know-
ledge update and checking steps as conducted in the state mapping algorithm
are performed, such that a virtual state mapping for the new states exists.
Figure 7.10 shows the new virtual states.

The new terminal virtual state V5 is used as the starting point for the
next level in the search algorithm. Again, all repair strategies are consulted.
We continue with the strategy following the highlighted path in Figure 7.9.
This strategy is called consume and does not add any new virtual nodes
to the implementation automaton, but marks the routine call following the
insertion point of the virtual branch in the automaton as consumed. Doing so

118 CHAPTER 7. SEMANTIC ASSISTANCE

oO—0-——--—>
"
€ c.stop
O————>
O O 4F=-=>--
Ve c.stop remove d.stopQ

e
c.start

dup! dup? ;'b.stop! c.stop? d.stop! d.stop?

Figure 7.10: Program repair example with virtual states after one step.

is only possible if this call does not lead to any contract violations in the new
virtual mapping. In the example, the call c.stop is consumed and a virtual

7.2. PROGRAM REPAIR 119

Repair Proposal Total Weight
insert d.stop, remove c.stop, remove d.stop
insert d.stop, skip c.stop, remove d.stop
remove c.stop

remove c.stop, insert d.down, insert d.up
remove c.stop, insert d.down, remove d.stop
remove c.stop, remove d.stop

remove c.stop, skip d.stop

WO || W | &~

Figure 7.11: Repair proposals and their weight, ordered by appearance in
the search tree.

state mapping and knowledge update is established for the consumed nodes.

Next, again all repair strategies are consulted. After the insertion strat-
egy was executed, the remove strategy removes the routine call d.stop. The
resulting set of changes (insert d.stop before c.stop and remove the existing
d.stop after c.stop) is a valid repair proposal. The question remains, how the
algorithm detects whether a certain path in the search tree is a valid repair
proposal.

Recognizing Valid Repair Proposals

After each application of a repair strategy, the algorithm checks whether
the resulting virtual state mapping can be continued with the rest of the
implementation automaton. Since a full state mapping application in every
node of the search tree would take too long, only a fixed number of state
mapping steps are performed. If no violations are found within these steps,
the path leading to this node in the search tree is assumed to be a valid
repair proposal.

Prioritizing Repair Proposals

In the example presented, several valid repair proposals have been identified.
In order to present only the most adequate proposals to the programmer,
these proposals need to be sorted. We use the total weight of a proposal
based on the sum of the individual weights of the repair strategies.

120 CHAPTER 7. SEMANTIC ASSISTANCE

5 _1ofx
Program Repair Proposals ' f@ Driller - drill &3
k.
Select a proposal to fix this contract violation "\ ROUTINE drill
| | ()
| cooler.start |
Select a proposal: i
" MOVE CALL driler.stop AFTER driler.up | driller.start |
1
™ 3 DELETE CALL cooler.stopCoaling | driller.down |
" Mare Proposals I
| driller.up |
1
| oF driller.stop |
s s e s 4 = I
i < Back | [ext = | Fimish I Cancel | | cooler.stop |
1
(a) Program repair proposals wizard showing pro- (b) Result of program repair.

posals for the example.

Figure 7.12: Program repair wizard proposing repair actions with minimal
impact.

Remark: Although a move strategy has been introduced it is
not an explicit strategy, rather a consequence of an insert and a
subsequent remove strategy (or vice versa) of the same routine
symbol.

The highlighted path in the example has a total weight of 1, since the
two strategies, insert and remove, can be merged to a logical move strategy
having the weight 1. Thus, this repair proposal has the minimal weight and
will be ranked higher than other repair proposals. Figure 7.11 shows all repair
proposals of the search tree with their respective total weights.

These ordered repair proposals are then used in a wizard as shown in
Figure 7.12(a). The end user can then select the adequate repair proposal
and the tool automatically applies the changes (Figure 7.12(b)).

These repair proposals are assumed to be valid repair proposals, as stated
above. Nevertheless, this assumption might be wrong, if the program repair
proposal introduces errors which emerge later in the program. In order to
only propose repair proposals that are guaranteed to repair the program, we
could apply the change proposals of the best repair proposals to a copy of
the defective program and then have the program checked. However, this

7.2. PROGRAM REPAIR 121

check may again give false positives in case the program had multiple viola-
tions. Program repair only repairs the first violation within a program, since
later violations might be consecutive faults. A repair proposal which corrects
the first violation does not necessarily make the whole program correct, but
eliminates this first violation.

Error Location Before Error Detection

In the example shown above, it was simple to find a repair proposal, because
the location where the contract violation was detected was the exact location
where a (short) repair proposal could be found. Nevertheless, there might
be situations where an error can be fixed by changing the program several
statements before the error location. The algorithm is therefore also executed
at states prior to the error location, thus creating additional search trees.

To account for the goal of having changes as close as possible to the
error location, repair proposals resulting from such an additional search tree
farther from the location of error detection have an additional weight.

Program Repair Example with WAl T Statement

Listing 7.13 shows a routine of a program consisting of a cooler and a driller
component, which are used in parallel. The parallel threads are coordinated
by a WAI T statement which waits for the cooler to be started, before the
driller is started. Note, that the second parallel block starts in line 8. However,
the cooler is stopped only after a certain timeout (line 11). Since we cannot
be sure that the driller is stopped before the cooler, a constraint is violated.

The program repair algorithm finds that the error location is within a
parallel block, thus it allows using the program repair strategy which inserts
WAI T statements. The repair proposals found are:

e insert WAI T NOT driller.isStarted() before cool er. stop

e delete call cool er. stop

O ~J O U= W N+~

— = = =
W N = OO

122 CHAPTER 7. SEMANTIC ASSISTANCE

PARALLEL
WAI T cool er.isCooling();
driller.start();
driller.down();
driller.up();
driller.stop();

]
VWAIT nextlten();
cool er.start();
MSG "drilling hole into itent;
WAI T TI MEQUT(3000) ;
cool er.stop();

END

Figure 7.13: MONACO code with semantic error. The cooler might be
stopped, before the driller.

7.3 Program State Visualization

Program state visualization aims at helping program understanding for end
users who have to maintain or adapt existing programs. Currently, end users
only have two possibilities to get an understanding of an existing program:

e read the source code and try to understand it, and

e run the program to find out what the results are.

These possibilities are not adequate for end users. On one hand, end
users do not have the software engineering expertise to be able to understand
complex programs in detail. On the other hand, in the automation domain
it can be fatal to run a program without knowing the results beforehand.

7.3.1 Overview

To tackle these issues, a program visualization tool has been created, which
allows a design-time visualization of MONACO programs [Str09]. It visualizes
the machine states corresponding to the different positions in a MONACO
program without executing the program.

7.3. PROGRAM STATE VISUALIZATION 123

SIOLIINE Sl Situation 1 [Situation 1 v
|coo|er.start() | o C-LS_C?;l_iﬁ_g
=1 . disStarted |
Idrlller.start() |
[WAIT driller.rpmReached()| ‘

[aritler.down() L] %
[arilter.up() \,h

Idrill;er.stop() |

Icooler.stop() |

MonAco IDE State Deduction Visualization

Figure 7.14: Program visualization overview.

The program visualization tool uses situational knowledge created by
the state mapping algorithm. The overall process works as follows (see Fig-
ure 7.14):

1. The user selects a position in the visual editor of the MoNAcO IDE
without executing the program.

2. The states in the implementation automaton corresponding to the se-
lected statement are searched.

3. The situational knowledge at these states are summed up and forwarded
to the visualization tool.

4. The visualization tool uses the situational knowledge to visualize the
machine state.

7.3.2 Knowledge Deduction

The knowledge deduction system generates situational knowledge prepared
for the visualization tool. The visualization tool gives a list of questions to
the knowledge deduction system which in turn computes the answers. The
questions are function symbols for which the tool needs the value in order
to visualize the component state. The answer to each question can either be
TRUE, FALSE, or UNKNOWN, depending on whether the knowledge in a

124 CHAPTER 7. SEMANTIC ASSISTANCE

Function Symbol Value
c.isCooling TRUE
d.isDrilling FALSE
d.isStarted TRUE
d.rpmReached UNKNOWN

Figure 7.15: Results of the state deduction process.

certain situation implies the question (TRUF), implies the negation of the
question (FALSE) or neither of them (UNKNOWN).

Assume that we have a cooler and a driller component as shown in Fig-
ure 7.14. The user clicks the space after the statement dri || er. down()
to see the state of the machine after this statement has been executed. The
system finds a single state in the implementation automaton with one situ-
ation attached. The knowledge in this single situation is K ={c.isCooling,
d.isStarted, —~d.isDrilling}.

The visualization asks for the values of all function symbols (in the ex-
ample c.isCooling, d.isStarted, d.isDrilling, and d.rpmReached). From the
knowledge above and the invariants of the system, the values shown in Fig-
ure 7.15 are deduced using an SMT solver. For each question, the SMT solver
needs to verify whether sat(K A Inv Aquestion) or sat(K AInvA—question).
If both satisfiability checks are true, or both checks are false, the value
UNKNOWN is used. If the location selected by the end user corresponds
to several states in the implementation automaton, and/or multiple situa-
tions exist, the process described above is executed for each situation. The
visualization tool is then provided with the answers for each situation.

7.3.3 Visualization

The state visualization tool is a plugin to the MoNAco IDE and displays
a schematic view of a set of MONACO components. Based on the values
generated from the state deduction (see previous section), the visualization
displays parts of components in different colors, size, position, rotation, and
visibility and can even run animations. The visualization allows users to
switch between multiple situations, so that the end user can see in which
states the system could be, when the selected location in the code is reached.

7.3. PROGRAM STATE VISUALIZATION 125

The visualizations of the components, the binding of properties of the com-
ponents on values of function symbols, as well as the animations need to be
created in advance by an expert designing the MONACO component.

Figure 7.16 shows the visualization of a hydraulic solvent can component
consisting of a set of valves and a solvent container (from the EcoChargePD
case study, see Chapter 8). The visualization shows a picture of the current
situtation for the selected position in the MONACO routine. It shows an
animation of the solvent flow (arrows in the pipe), the change of the state of
a valve (spinning valve symbol), the container filling up with solvent and open
(green) and closed (red) valves as well as valves whose states are unknown

(gray).

Note, that for the selected code position, the state deduction algorithm
has found two different situations (situation 1 is shown currently). The user
can switch between the two situations with the arrow buttons in the upper
left corner to see the visualization of the state of the components in another
situation. Additionally, all function symbols and the values reported by the
state deduction process are shown for the selected situation (top right).

126 CHAPTER 7. SEMANTIC ASSISTANCE

I
| vCanSToAtomizer.Close |

"

| vPSCSolvent.Open | =
I

| vCanSFill.open |

L Il 1]
‘
>
‘ [warT Fill eveiy = MarFill avel | ’J _

= properties | (21 Problems | [JavaFs Result iew 52 =g

"HydrSolventCan® [Show multiple situations

HydrSolventCanyPSCEolventlsCpen = TRUE
= Sityation 142 x| = HydrSalventCanvPECAirlsCpen = FALSE
I HydrSolventCanyPSCOrain IsOpen = FALSE

HydrSolventCanyCanSAirlsOpen = FALSE

"Hydr3akventCan” HydrSolventCanyCanSFilllsOpen = TRUE
HydrSolventCan vCanSToAomizerlsOpen = FALSE
HydrSolventCan.pCans. HasPig = URIKKROWN

WSCSolvent HydlrS olvantC an pPEC. HasFig = UNKNOWN
WSCDraln SAIl vCanSToAtornLzer
WSCAIr yCanSAlr

¥

Figure 7.16: State visualization with flow animation.

Chapter 8

Case Studies and Evaluation

This chapter describes case studies in which the presented work has been
validated. Furthermore, evaluation results about program state visualization
are presented.

8.1 Keplast Injection Molding Machine

The injection molding machine software investigated in this section is a reim-
plementation of an existing control program of our industrial partner Keba.
As the system has already been introduced in Section 3.5 we will refer to
Section 3.5 for details on the MONACO implementation.

Recall, that the program is structured into a hierarchy of components
(see Figure 3.11). Each component has an interface which defines how it can
be used by its upper component.

8.1.1 Contracts

We have created contracts for all interfaces of the Keplast system. The con-
tracts describe the intended usage of the components. We will take a look
at the interfaces | Mol dCtrl and | Nozzl eCt r| and their contracts. The
interface definition of | Mol dCt r | is shown in Figure 8.1.

The contract for this interface (see Figure 8.2) allows us to call the open

127

© 00~ O U = W N~

128 CHAPTER 8. CASE STUDIES AND EVALUATION

| NTERFACE | Mol dCtr |
EVENTS error;
FUNCTI ON i sOpen() : BOQO;
FUNCTI ON i sCl osed() : BOQ;
FUNCTI ON cl anpPos() : REAL;
ROUTI NE open();
ROUTI NE cl ose();
ROUTI NE st op();

END | Mol dCtr |

Figure 8.1: Interface | Mol dCtr 1.

and cl ose routines in turn. It also allows us to call the routine st op on the
mold, if the routines cl ose or open are interrupted (by an error signal).
The call of the routine open has a postcondition that guarantees that after
the call the proposition isOpen holds. Similarly, the routine call cl ose has
the postcondition ¢sClosed. In addition, the contract also has an invariant,
stating that the mold can never be opened and closed at the same time (see
Figure 8.3). When an error has interrupted execution of the routines cl ose
or open, the knowledge about the state of the mold is lost (it might be
opened, closed, or in an intermediate state). The knowledge about any of
these states is therefore retracted (see Figure 8.2).

T

Post : isOpen() - ———=—=_ 1

open! open?

~N
N

N stop! stop?
. o o
Retract : is/ losed, isOpen

. SN —_——— - -
Post : isClosed() T

Figure 8.2: Protocol automaton for the interface | Mol dCt r | .

The second contract we present for the Keplast case study is the con-
tract of the interface | Nozzl eCtrl (see Figure 8.4). The nozzle component

I nvariant: NOT (isC osed() AND i sOpen())

Figure 8.3: Invariant of | Mol dCtr | .

O~ O UL i W N+~

8.1. KEPLAST INJECTION MOLDING MACHINE 129

| NTERFACE | Nozzl eCtrl
ROUTI NE st art Heating();
ROUTI NE i nject();
ROUTI NE pl asticize();
FUNCTI ON t enpReached() : BOCOL;
FUNCTI ON i sPl astici zed() : BOQ.;
FUNCTI ON i sl njected() : BOO.;
END | Nozzl eCtrl

Figure 8.4: Interface | Nozzl eCtrl .

controls the supply with plastic granulate for the injection of melted plas-
tic into a mold. Therefore it has the routines i nj ect, pl asti ci ze, and
st art Heat i ng and the functions t enpReached, i sPl asti ci zed, and
i sl nj ect ed. The contract of the nozzle specifies, that first the nozzle needs
to be heated before the injection routine and the plastification routine can
be executed in turn.

The routine St art Heat i ng guarantees that after its execution the melt-
ing temperature of the material has been reached. The routine i nj ect needs
the nozzle to be filled with plasticized material or to have the target temper-
ature reached and guarantees that after it is executed, the plastic material is
injected. Similarly, the routine plasticize guarantees that after its execution
the function i SPl asti ci zed returns true.

Pre : isPlasticized V tempReached
Post : isInjected

mject?

/O

plasticize!

mnject!

_ OstartH eat!_startHeat?

Post : tempReached

plasticize?

Pre : isInjected
Post : isPlasticized

Figure 8.5: Protocol automaton for the interface | Nozzl eCtr| .

The contract for | Nozzl eCtr| also has an invariant (see Figure 8.6).
The invariant states, that the material in the nozzle cannot be refilled (plas-
ticized) and injected at the same time.

130 CHAPTER 8. CASE STUDIES AND EVALUATION

Invariant: NOT (isPlasticized() AND islnjected())

Figure 8.6: Invariant of | Nozzl eCtrl .

8.1.2 Constraints

In addition to the contracts, we also identified constraints which need to hold
at any time during execution of the system. Figure 8.7 shows a constraint
stating that the screw may only be in front, if the heating control has reached
the required temperature.

CONSTRAINT (I ScrewCtrl screw, |HeatingCirl heating)
[NOT (screw. islnFront() AND NOT heating.tenpReached())]

Figure 8.7: Constraint of | ScrewCtrl and | Heati ngCtrl.

8.1.3 End-User Support

In this section we will show the application of the different semantic assistance
tools in the Keplast case study. All figures will show the tools applied in
the routine Kundenf enst er which is the routine in which end users are
supposed to make program changes. First, we will show the semantic assist
popup in the MONACO textual editor. Figure 8.8 shows the popup between
two parallel statements of the routine. The selected component is mold (since
nmol d. is already typed in the editor), and the proposed routine is open.
According to the contract, no other routine may be called at this position.

Figure 8.9 shows the outline highlighting feature of the MoxAco IDE.
The spot below the routine call nozzl e. i nj ect is selected (see mouse
cursor) and the outline view shows routines which may be called at this
position in the code. The icon of routines that may not be called at this
location is crossed out.

Figures 8.10 and 8.11 show the drag-and-drop assistance in the visual
editor of the MoNAcoO IDE. Figure 8.10 shows the user dragging the routine
call mol d. open from the outline view to a position where inserting the call
is allowed. The immediate feedback of the system is the green plus sign,

8.1. KEPLAST INJECTION MOLDING MACHINE 131

ROUTIHE Fundenfenster ()
BEGIN

mold.close():

PARATLEL

nozzle.inject ()
Il

WAIT TIMEOUT (coolingTime) !
EHD

mold.
5 open()
PARAL XClose()
o gerror ¢ EWENT
I “J isClosed()
=T isCpent)
I “ I position(}

W3 stan(y

e

EHD

Figure 8.8: Semantic assist popup in the routine Kundenf enst er propos-
ing routine open.

|ROUTINE Kundenfenster ()

El = {l Supervisor

- S Kundenfenster(}

8 autornatic()
| mD|d.l:||I)Se | - codingTime : INT
l:l EIE ejeckorChrl : IEjectorChr
[| :
1 1 H ject()
| nozzle.inject |> WAIT TIMEOUT(zonling Time) | -2 stop()

"4 errar 1 EVENT
=L mald : MoldCtrl

I is0pen() : BOOL

°J isClosedi) : BOOL

| D =+ I position() | REAL

| nozzle.plasticize

|mo|d.open

open()

|> WYWAIT mold posiion() < 0.5 | 2K, closa)
T P4 stopi)

| ejectorCtrl.eject | ~4F error 1 EVENT
E-E | nozzle : Hozzlect
- x startHeating()
stop()

- x inject()

- 8 plasticize()

I temperatureReached

Figure 8.9: Outline highlighting in the routine Kundenf enst er for the
selected position in the code.

132 CHAPTER 8. CASE STUDIES AND EVALUATION

|ROUTINE Kundenfenster ()

mold.close

t—j-:-penlf I

K
|noz|e.injecl | [>WA|T TIMEGUT {eonling Time) |

| ejectorCirl.eject

-
— o |

Figure 8.10: Drag-and-drop assistance allowing to insert a routine call.

|ROUTINE Kundenfenster ()

mold.close

-
| nozzle.plasticize | | maold.open | |> WAIT mold positong) < 0.5 |
| - .
xg v | ejectorCirl.eject |

Figure 8.11: Drag-and-drop assistance denying to insert a routine call.

showing that adding the routine call does not lead to a contract violation at
that location in the code.

Figure 8.11, in contrast, shows the user dragging the same routine call to
a position where it is not allowed to insert the call. A red cross sign indicates
that the routine call is not valid here.

Figure 8.12 shows the semantic error resulting from inserting the rou-
tine call nol d. open at an invalid position. In this example the call now

8.2. DUERR PAINT SUPPLY SYSTEM 133

[ROUTINE Kundenfenster ()

1
|mo|d.c|ose |
|

| | B
| nozzle.inject | |> WAIT TIMEOUT ooling Time) |
1
| | - B
. 1 .
|noule.plasllclze | mold.open J i |>.WAIT mold posiion() < 0.5 |
1
@Id.open a 1 | ejectorCirl.eject |
E
1
g

Figure 8.12: Semantic error: the routine nol d. open is called twice within
the parallel statement.

appears in two parallel branches, which is not allowed by the contract. The
semantic error is highlighted by a red line and a light bulb. In the example,
both instances of nol d. open are highlighted as errors, since the verification
algorithm cannot deduce, which of the calls is an actual error. Clicking the
light bulb opens the program repair assistant shown in Figure 8.13. Program
repair proposes to remove a call to nol d. open.

8.2 Duerr Paint Supply System

Duerr is a customer of our project partner Keba and produces painting robots
for the automotive industry. We implemented a case study modeling the paint
supply system of a painting robot used in the automotive industry (product
name: FcoCharge PD). The goal of the case study was to show the applica-
bility of MONACO and its tools, including Semantic Assistance, to a system
composed of dozens of components. We have reimplemented the reactive
control part of the system and proved the applicability of MONACO. In this
section, we will describe the system, the contracts of its components, and
the constraints we identified. Finally, the application of the various Semantic
Assistance tools is shown.

134 CHAPTER 8. CASE STUDIES AND EVALUATION

A0V Fix Contract Yiolation el 10l x| 41V Fix Contract Yiolation el 10l x|
Program Repair Proposals Program Repair Proposals Selection
3 3
Select a proposal to fix this contract violation \\ Select a proposal to fix this contract violation \\
2= 2=
Proposals: Select a proposal:
DELETE CALL mold.open] % 3 DELETE CALL mold.open:
INSERT CALL nozzle.inject, DELETE CALL mold.open] B mmED S
DELETE CALL mold.open, IMSERT CALL nozzle inject] £ More Proposals
DELETE CALL ejectorCtrl eject, DELETE <ALL mold.open]
DELETE CALL mold.open, DELETE CALL ejectorChrl.eject]
Details:
7 <« Bark I Mext = I Finiish | Cancel | 7 <« Bark I [ext = | Firish I Cancel |
(a) List of proposals. (b) Highest ranked proposal.

Figure 8.13: Program repair proposing to delete one of the calls to
nol d. open.

8.2.1 Monaco Application

The paint supply system consists of six MONACO components and over 60
native subcomponents. It regulates the paint supply and the purging of the
paint pipes. The native subcomponents are mostly valves being opened and
closed to let paint, air and solvent flow through pipes, and to fill paint pis-
tons. Some of the pipes contain so-called pigs (pipeline inspection gauges)
that float in the pipe and physically separate different liquids or air being
transported.

Figure 8.14 shows the main components of the system. On the bottom
left, the color changer component allows the system to insert different types
of paint, without mixing any two colors. Next, a pipe with a pig leads to one
of the subchannels. The paint supply system may consist of multiple subchan-
nels which independently supply the atomizer component (top right) with
the exact color needed. The implemented system has two subchannels. While
one of the subchannels pushes paint to the atomizer, the other subchannel
is reloaded with the appropriate paint for the next product. The atomizer is
the spray nozzle that coats the product with the paint. In addition, the sol-
vent can component provides the system with solvent for purging the pipes

8.2. DUERR PAINT SUPPLY SYSTEM 135

Atomizer

— = %

Main Channel
D% i %ﬂ
P . e
Solvent Can

Subchannel Color Changel

14

Figure 8.14: Schema of the Duerr application.

whenever a pipe needs to be loaded with another paint.

8.2.2 Contracts

We have created contracts for all interfaces of the Duerr system. The interface
| Val ve is used most often, therefore we will discuss this interface and its
contract. The interface definition is shown in Figure 8.15. It consists of the
function | sOpen returning the current state of the valve. In addition, two
atomic routines exist, which can be used to open and close the valve.

The contract for this interface is depicted in Figure 8.16. The contract
allows opening and closing the valve in turn. Postconditions guarantee that
after calling the routine open the proposition isOpen() holds. Similarly,
calling the routine cl 0se guarantees that the valve is not opened.

Another component in the Duerr application is the solvent can. The sol-

1
2
3
4
b)

CU = W N+~

136 CHAPTER 8. CASE STUDIES AND EVALUATION

| NTERFACE | Val ve
FUNCTI ON | sOpen() : BOQL;
ATOM C ROUTI NE Open();
ATOM C ROUTI NE C ose();
END | Val ve

Figure 8.15: Interface | Val ve.

close?

Post : isOpen() Post : ~isOpen()

Figure 8.16: Protocol automaton for the contract of |1 Val ve.

| NTERFACE | Sol vent Can
FUNCTI ON Fil |l Level () : | NT;
ROUTINE I nit();
ROUTI NE Refill();

END | Sol vent Can

Figure 8.17: Interface | Sol vent Can.

vent can stores solvent to purge pipes which are used to direct different liquids
(paint in different colors) in the paint supply system. The can is refilled reg-
ularly from a larger solvent tank, and the pipe between this solvent tank and
the solvent can needs to be filled with air afterward in order to electrically
insulate the tank from the rest of the paint supply system. The interface of
the solvent can is | Sol vent Can and is shown in Figure 8.17. It contains the
function Fi | | Level and two routines for the initialization (routine I ni t)
of the valves and for refilling the solvent can (routine Refill).

The protocol automaton for the contract of | Sol vent Can is shown in
Figure 8.18. It requires to first call the | ni t routine to initialize the solvent
can. Afterwards, the routine Refi | | can be called repeatedly. The contract
does not give any guarantees about the component state and does not use
preconditions.

8.2. DUERR PAINT SUPPLY SYSTEM 137

Init?

|

Re fill! Re fill?

Figure 8.18: Protocol automaton for the contract of I Sol vent Can.

8.2.3 Constraints

We have identified many exclusion conditions that state that certain valves
may not be open simultaneously, and modeled these conditions as constraints.
In the following, we will take a look at the solvent can component.

Figure 8.19 shows the solvent can with its valves and pipes in different
states, while the solvent can is refilled. The left part of the system is connected
to the solvent tank by a valve that brings the solvent to the solvent can. The
solvent can (on the right side) is connected to the left part of the system by
a pipe. Within the pipe a pig separates solvent from air, such that solvent
can be pressed into the solvent can without getting air into the can.

Figure 8.20 shows the exclusions on the valves, meaning that two valves
that are connected by a thick red line may never be open at the same time.
The exclusions are quite obvious: an air input must never be opened together
with a solvent valve, such that no air bubbles are in the solvent. Similarly,
the solvent must not be pushed to the drain. The constraints for these exclu-
sions are given in Listing 8.1, for a comprehensive list of all constraints see
Appendix B.

In the original system, these conditions had to be checked at runtime (in
every cycle of the execution) and therefore had a great negative impact on
runtime resources. These conditions can now be verified statically, even when
end users change the program.

138 CHAPTER 8. CASE STUDIES AND EVALUATION

IS AASSASSS,

lvent ! Fill 5ol ; t ! Fill
Vgl_4 1 VR 1
E Lar r Aar
Drrain Drrain
Air Air

SolventCan SolventCan

AN,

yio
OO,

(a) Initial state of the system. All (b) The solvent can is being filled.
valves are closed.

IS AASSASSS,

Rl NG ! ;
e 1 x lvgﬁ‘ Fill
Drain Drain

Air Air

SolventCan SolventCan

AN,

OO,
7]

(c) The solvent can is getting full. (d) The remaining solvent in the pipe
is pushed into the can using the pig.

Sglvent : Fll
54 —
g Ay
Drain
Aar
SolventCan

(e) When the solvent can is filled, the
filling valve is closed and the solvent
can be used to purge pipes.

Figure 8.19: Structure and functioning of the solvent can component in the
Duerr case study:.

8.2. DUERR PAINT SUPPLY SYSTEM 139

vPSCSolvent gt
"

— -t
vPSEDr ail
VPSCAir

vCanSToAtomizer

SolventCan

Figure 8.20: Exclusion conditions between the valves of the solvent can
component.

CONSTRAI NT (1Val ve vPSCAi r, | Val ve vPSCSol vent)

[NOT (vPSCAir.1sOpen() AND vPSCSol vent.|sOpen())]
CONSTRAI NT (I Val ve vPSCAi r, | Val ve vPSCDr ai n)

[NOT (vPSCAir.1sOpen() AND vPSCDrain.|sOpen())]
CONSTRAI NT (I Val ve vPSCSol vent, | Val ve vPSCDr ai n)

[NOT (vPSCSol vent. 1 sOpen() AND vPSCDrain.|sOpen())]
CONSTRAI NT (IVal ve vCanSAir, |Valve vCanSFill)

[NOT (vCanSAir.|lsOpen() AND vCanSFill.lsOpen())]
CONSTRAI NT (1 Val ve vCanSAir, 1|Val ve vPSCSol vent)

[NOT (vCanSAir.|sOpen() AND vPSCSol vent.|sOpen())]
CONSTRAI NT (I Val ve vCanSFill, 1Val ve vCanSToAt om zer)

[NOT (vCanSFill.IsQOpen() AND vCanSToAtoni zer.|lsOpen())]

Listing 8.1: Constraints used in the component Hydr Sol vent Can case
study Duerr.

8.2.4 End-User Support

The different semantic assist tools have also been evaluated in the Duerr
case study. All figures will show the tools applied in the routine Fi | | of the
solvent can implementation Hydr Sol vent Can.

First, Figure 8.21 shows the semantic assist popup in the MONACO text
editor after the call to the routine Open of subcomponent vCanSFi I | .
The selected component is vCanSToAt om zer , the valve that connects the
solvent can to the other parts of the paint supply system. The only routine
proposed is Cl 0se, since opening the valve would violate a constraint (see
Listing 8.1).

140 CHAPTER 8. CASE STUDIES AND EVALUATION

ROUTINE Fillj(]
BEGIH
vlan3Toltomizer.Close();
VPECHolvent.Openi) ;
vCanSFill.Openi);
vCan3Toltomizer.
Sclnse()
BEGIN “J IsOpen()
WAIT FillLev xonen()
OH TIMEOUT (23000
vP3CS0lvent.

viCan3Fill.Cl
FIRE error;
EXIT;

ENRD

vP3C3olvent.Close () ;
vZan3Fill.Close();
EHD Fill

Figure 8.21: Semantic assist popup in the routine Fi | | of component Hy-
drSolventCan.

Outline highlighting is shown in Figure 8.22. The selection is between the
routine calls VPSCSol vent . Open and vCanSFi | | . Qpen. In the outline
view (right part of the figure) some routines are disabled (icon is crossed out).
The routine Open of the subcomponent VPSCAI r is disabled, because a con-
straint enforces that the valve vVPSCSol vent and vVPSCAI r are not open at
the same time. Directly above the selection, one of the valves is opened, there-
fore the other valve may not be opened. The routines vPSCDr ai n. Qpen and
vCanSAi r. Qpen are invalid for the same reason.

Figures 8.23 and 8.24 show the drag-and-drop assistance in the routine
Fi | | of the solvent can component. In the first figure, the insertion of the
call is allowed (a green plus sign appears). In the second figure, the call
is dragged onto a location where inserting the routine call would violate a
constraint. Therefore a red cross sign is shown to indicate this violation.

Figure 8.25 shows the routine Fi | | with a semantic error. The valve
vCanSToAt om zer is opened although this violates a constraint. This se-
mantic error is highlighted in the visual editor by the red line and a light
bulb. The light bulb signalizes that program repair can find a suitable fix for
the error.

The program repair results for the semantic error in Figure 8.25 are shown
in Figure 8.26. The proposals with the best ranking are to either close the
valve vCanSFi | | before the location of the error, or to delete the call causing

8.3. PROGRAM STATE VISUALIZATION EVALUATION

[ROUTINE Fill ¢)

|vCanSToAtomizer.CIose

|vPSCSoIvent.0pen
L T

| vCansFill.open b
,

ML

|> WAIT FilLevel() >= MaxFilLevel |
|

= 'ﬂ HydrSolventZan

= E wPSCSolvent : Ivalve
(T IsOpen() : BOOL
58 open()

S Close()

=) E vPSCAIr : [valve

°J IsOpen() : BOOL
P Cpen()

23 Close()

[—]E wP5CDrain : Malve
°J IsOpen() : BOOL

-2 onen()

|vPSCSoIvent.CIose | 88 Clase()
1 [—]E wCan3Air | [Yalve
[vcansFill.close | i mopen) 9001
| : Open()
88 Clase()

141

[—]E wCan3Fill : Walve

i+ F 1s0pen() : BOOL
H Open()

88 Clase()

IHE vCanSToAtomizer | Ivalve

Figure 8.22: Semantic Assistance highlighting valid and invalid routines in
the outline.

[ROUTINE Fill {)

<Em or

| vCanSToAtomizer.Close

| vPSCSolvent.Open

| vCanSFill.open

B0

[> WAIT FillLevel() >= MaxFilLevel |
|

| vPSCSolvent.Close

| vCanSFill Close

Figure 8.23: Drag-and-drop assistance allows adding the routine call.

the constraint violation.

8.3 Program State Visualization Evaluation

In order to show the effectiveness of program state visualization, an evalu-
ation study with undergraduate mechatronics students was conducted. This
study was on end-user programming and its results were — although very

142 CHAPTER 8. CASE STUDIES AND EVALUATION

[ROUTINE Fill {)

| vCanSToAtomizer.Close |

|vPSCSoIv=nt.0p=n |

wa

[vcansFill.open

|>I WAIT FilLevelp >= MaxFilLevel | >
|

| vPSCSolvent.Clase |

| vCansFill Close |

Figure 8.24: Drag-and-drop assistance indicates violation of a contract or
a constraint.

[ROUTINE Fill {)

| vCanSToAtomizer.Close

|vPSCSoIv=nt.0p=n

| vCansFill.open

| vCanSToAtomizer.Open

52| = -

[WAIT Fueveip>= varrueve |
|

| vPSCSolvent.Clase

| vCansFill Close

Figure 8.25: Routine Fi | | with a semantic error.

promising — not statistically significant. We therefore are going to set up a

second study to probe the benefits of program state visualization on program
understanding.

8.3.1 Program Visualization Guiding End-User Pro-
gramming

The first experiment had the goal to identify the benefit of program visual-
ization for end-user programming. It was conducted with 11 undergraduate

8.3. PROGRAM STATE VISUALIZATION EVALUATION 143

I} Fix Contract Yiolation =2] 3
Program Repair Proposals Selection \
3
Select a proposal bo fix this contract violation ‘\
="}

Select a proposal:
{7 gp IMSERT CALL vCansFill.Close BEFORE vCanSToAtomizer, Open in Fil
e 57 IMSERT CALL vCansFil.Clase AFTER wCanSFill.Open in Fill
i #{ DELETE CALL vCansToatomizer, Open
" More Proposals

[t = | Einish I iZancel |

Figure 8.26: Program repair proposals for the semantic error shown in
Figure 8.25.

students which were presented a component of a bottle sorting application
by means of a video clip of a machine simulation. We introduced the students
to the application, MONACO-specific statements, as well as all possible rou-
tine calls and conditions. The presentation and introduction was performed
in groups of 4 students, such that the students had equal knowledge of the
system. The students were then assigned to one of four experiment stations,
where they were assigned the task of programming the bottle partition al-
gorithm they had seen before. In order to keep the impact of tool handling
and usability as low as possible, an operator trained in using the MONACO
system performed the programming tasks as the students commanded.

Each group was (without knowledge of the students) separated into two
subgroups, one group being able to use the program visualization, and an-
other group that had to do the programming task without using the program
visualization tool. The visualization given to one group of the students is
shown in Figure 8.27. It shows the top view of a conveyor belt with two sen-
sors (black dots to the left of the conveyor belt) and two gates which could
be used to stop bottles from being moved by the belt. The belt moves bottles
from the bottom end to the upper end of the belt, where they are removed by
a robot. The task of the students was to create a program that ensures that
always at most one bottle was at the removal position (top of the figure).

144 CHAPTER 8. CASE STUDIES AND EVALUATION
Visualization T | No Visualization | 7
4 1 1 3 2(233(2 2 3 2 1 |200
7T 2 2 6 34175 9 5 3 6 |5.60

Skills 3
5

Duration [mins|

Table 8.1: Results of the first experiment

Figure 8.27: Program state visualization used in the first experiment.

The visualization showed the students the current state of the system:
whether a certain gate was opened or closed, whether a bottle was at the first
sensor (between the gates) or at the second sensor (at the removal position
at the end of the belt). The students could use the visualization to think
about the next step they wanted the program to perform.

Each student was asked to rate his programming skills on a scale of 1 to
5, with 1 being "very good" and 5 being "poor". This way we could track
the influence of general programming skills on the experiment. We measured
the time it took the students to implement the program correctly. Table 8.1
shows the results of the individual students in this experiment.

Interpretation
Due to the small sample size, no well-grounded statements can be made.

We have seen that program visualization has no significant impact on the
productivity of programmers who need to create a program from scratch.

8.3. PROGRAM STATE VISUALIZATION EVALUATION 145

8.3.2 Program Visualization Helping Program Under-
standing

A second detailed experiment is being planned for the next semester, since
the first experiment did not reveal statistically significant data. The experi-
ment will research the benefit of using program state visualization to under-
stand program behavior and find bugs. It will be conducted in the oncoming
semester with mechatronics students who will be presented a valve system
similar to the paint supply system (see Section 8.2). We will introduce the
students to the different components of the application and statements spe-
cific to MONACO. Next, the students will have to describe the behavior of a
prepared program. We will measure the time it takes the students to fully
explain the functionality of the program. As a second test, we will give a
similar program to the students, now with a small error introduced. One of
the valves is not opened, and thus the fluid can not flow through the system
as expected. We will measure again, how long it takes the students to find
the error and find a suitable solution to the problem. In both tests, we will
also make notes of misunderstandings and false conclusions.

Similar to the first experiment, we will conduct the second experiment
with only one half of the students being able to use the program visualization.
Both groups will have the MONACO source code of the defective application
in the visual editor to find the error. For this test, we will disable highlighting
of contract and constraint violations in the visual editor, otherwise finding the
error would be trivial. The program visualization for this system is depicted
in Figure 8.28.

We have already run this experiment with colleagues as test persons and
have seen that the first results are very promising. In order to get statisti-
cally relevant data, we will run the experiment with a larger sample size of
students.

146 CHAPTER 8. CASE STUDIES AND EVALUATION

MY

Figure 8.28: Program state visualization that will be used in the second
experiment.

Chapter 9

Related Work

This chapter compares different aspects of our work with existing approaches
and highlights their differences. Sections 9.1 and 9.2 introduce related work
on the verification of call sequences and safety properties. Section 9.3 de-
scribes work on automatic repair of programs based on some specification
of correctness. Section 9.4 compares work on program visualization to the
design-time animation approach.

9.1 Verification of Call Sequences

Verification of call sequence constraints has been investigated by many re-
searchers [0090,0092,PV02,HB07,Jin07|. The systems most similar to the
work of this thesis are presented in the following.

9.1.1 Cecil/Cesar

Olender and Osterweil describe Cecil, a language for the specification of se-
quencing constraints in a regular expression dialect (AQRE - anchored, quan-
tified, regular expressions) [O0O90]. The language can be used to describe
valid execution sequences of routine calls of abstract data types. Instead of
specifying the complete execution path Cecil expressions describe portions of
the valid behavior, therefore allowing partial specification of behavior. Cecil
specifications first describe which routine calls they govern. Then a list of

147

148 CHAPTER 9. RELATED WORK

partial specifications starting and ending at so-called anchors follows. An-
chor routines are written in square brackets, the special anchors [S] and
[t] describe the start and the end of the program, respectively.

Between two anchors, expressions similar to regular expressions can be
used to express valid sequences of routine calls. The quantifiers f or al | and
exi sts can be used to denote that the following expression needs to be
observed in each path of the program execution between the anchors, or in
at least one path. The special symbol ? matches any routine call governed
by this Cecil constraint. The operator * denotes an arbitrary number of rep-
etitions of the preceding subexpression (including zero times). The operator
+ denotes repetition of the preceding subexpression (at least one time).

Let’s look at an example describing call sequences of an abstract data type
for writing to files. Reasonable constraints for the available operations (open,
cl ose, wi t e) would describe that a file needs to be opened before it can
be written and must be closed before a new file can be opened. Furthermore,
one could want to ensure that a file is only opened if it is eventually written.
Listing 9.1 lists a Cecil constraint for such a file data type.

{open, close, wite} (
[s] forall (open; witex; close)* [t]
and [open] exists ?+ [wite])

Listing 9.1: Cecil constraint for a file operation routines

Cesar [0092] is the constraint checking tool for Cecil expressions. Cesar’s
sequencing analysis is based on a state propagation algorithm similar to the
state mapping algorithm described in Section 6.2. Instead of inlining the flow
graph of a callee into the flow graph of the caller, Cesar keeps the flow graph
of the callee separate and continues checking of a local routine call in the flow
graph of the respective routine. This approach makes it possible to analyze
recursive routine calls of abstract data types.

The implementation of Cesar provided tools to analyze Fortran programs,
and support for C and Ada programs was announced. In contrast to protocol
contracts, Cecil provides no means to specify preconditions, postconditions
or invariants to gather information about the abstract data type. In addition,
Cecil constraints can not operate on multiple instances of a data type (vari-
ables, subcomponents), which is necessary for the component-based approach
of MONACoO.

9.1. VERIFICATION OF CALL SEQUENCES 149
9.1.2 Behavior Protocols

Plasil et al. present Behavior Protocols [PV02,PJP06,Kof07], a language for
the description of component behavior. The language is similar to regular
expressions and describes the interaction of components based on the SOFA
component model.

SOFA components implement two types of interfaces: required and pro-
vided interfaces. The two types of interfaces can be compared to the compo-
nent boundaries of MONACO components: subcomponent variables specified
by their interfaces constitute the required interfaces, while the interface of the
component is the provided interface. The provided interfaces receive events
(routine calls in MONACO terms) and the component sends events to the re-
quired interfaces. The communication structure of the components in SOFA
allows more than MONACOs strictly hierarchical component composition.
SOFA allows modeling arbitrary component networks and component inter-
actions. While every MONACO component can only implement one provided
interface, SOFA components can have multiple provided interfaces.

Recently, a new approach called Threaded Behavior Protocols [KPéOS],
was presented. Threaded behavior protocols separate the provided interface
description (provisions) from the internal behavior which is again separated
into reactions and threads. Reactions and threads make up the actual be-
havior of the component, possible spread over multiple threads. In contrast
to threaded behavior protocols, our work extracts the actual behavior of a
component from the code (implementation automaton), while in threaded
behavior protocols the implementation is expected to meet the behavior of
the reactions and threads sections of the protocol.

Threaded behavior protocols support three main use cases:

UC1: Correctness Check Given a complete component application, show
that it does not contain communication errors.

UC2: Substitutability Given two components, show that one can be re-
placed by the other in a specific application or in any application.

UC3: Code Conformance Ensure that a component implementation con-
forms to its behavior specification.

150 CHAPTER 9. RELATED WORK

The work presented in this thesis supports all three use cases. The basic
use case supported is the code conformance check (UC3%): components are
checked to ensure they conform to their contracts with respect to the con-
tracts of their subcomponents. If all components of an application conform
to their respective contracts, the complete component hierarchy is correct

(UCH).

UC?2 is only partly supported by the checking approach presented in
Chapter 6: Since our verification approach checks components separately, it
is possible to guarantee substitutability of two components, if, and only if,
they implement the same interface and thus conform to the same contract.

9.1.3 Interface Grammar

Interface grammar [HB07| is a specification language based on grammars
which describe the valid usage of a Java component as a context free gram-
mar. The grammar can be annotated with semantic actions (Java code) and
is then used to generate component stubs. These component stubs contain
a table-driven top-down parser which regards method invocations as input
symbols. A program using these component stubs is then statically checked
(using Java Path Finder) to verify that the components are used as specified
by their interface grammars. The language and tools are used in a frame-
work for modular software model checking and have been demonstrated on
the Enterprise JavaBeans Persistence API.

Figure 9.1 shows the interface grammar for a file component. The gram-
mar describes that a file can be opened and then read or written multiple
times. An open file can also be closed. Double angle brackets separate se-
mantic actions from the interface grammar. These actions are generated into
the resulting component stubs.

We will take a closer look at the rule cl osed. The rule only accepts the
method call open, upon which it invokes the open method on some internal
file object, returns that it has successfully invoked open and applies the
rule opened. If other any routine is called, while the rule cl osed is active,
the second (empty) case statement triggers, which does not report successful
execution of any method (no return statement).

An interface grammar compiler generates a Java class for each interface

9.1. VERIFICATION OF CALL SEQUENCES 151

class file inplements IFile {
<< File f; ... >>;
rule start { apply closed; }
rule closed {
choose {
case ?open(): {
<< f >>. open();
return open; apply opened;
}
case : { }
}
}

rul e opened {
choose {
case ?read(): {
<< f >>.read();
return read; apply opened;
}
case ?write(): {
<< f > wite();
return wite; apply opened;
}
case ?close(): {
l<< f >>.close();
return close; apply closed;

}

case : { }

}

Figure 9.1: Interface grammar description for a file component.

grammar containing a table-driven top-down parser which handles all method
calls accepted by the grammar. The resulting Java classes are component
stubs, which make sure that the component’s routines are called as dictated
by their interface grammars. A model checker is then able to statically verify
that such a component is used in an orderly manner (the component stubs
throw exceptions when an illegal usage is found).

The approach of interface grammar is similar to our approach, in that

152 CHAPTER 9. RELATED WORK

NOT (VvPSCAI r. 1 sOpen() AND vPSCSol vent. | sOpen())

Figure 9.2: Constraint for two valves: they should never be open at the
same time.

they also aim at finding illegal usage of components by some client code.
Their description of component behavior is based on context-free grammars
and therefore allows to specify nested method calls. Safety properties, such as
the constraints described in this work are not part of the interface grammars.

9.2 Checking Safety Properties

The SPIN model checker (Simple Promela Interpreter) [Hol03| developed by
Gerard J. Holzmann uses LTL (linear temporal logic) [CGP99| to describe
safety and liveness properties. Similar to the notion of constraints, safety
properties in LTL assert that nothing bad happens. If we express the con-
straint in Figure 9.2 in LTL we get G=(vPSC Air.IsOpenANvPSC Solvent.IsOpen).
In essence, only the globally operator is added. Unlike LTL, the constraints
presented in this thesis do not allow stating liveness properties. In SPIN, pro-
grams under verification are modeled in PROMELA (process meta language)

and consist of processes which may communicate with each other.

As most model checking tools, SPIN is also aimed at expert programmers
who want to check safety and liveness properties of their code. SPIN provides
no support for end-user programmers. SPIN is therefore often used as back-
end in verification systems, where the program under verification is translated
to PROMELA code. Amongst others, behavior protocols (see Section 9.1.2)
have been experimentally translated to PROMELA code and then model
checked using SPIN [Kof07].

Ball et al. (Microsoft Research) developed a static analysis toolkit called
SLAM [BRO1,BBC*06] that finds APT usage errors in C programs. The
toolkit is used in the static driver verifier tool (SDV) to find kernel API
usage errors in Windows device drivers. First, an instrumented version of the
code under verification is automatically generated. A tool then abstracts the
instrumented code into a so-called Boolean program, consisting of the orig-
inal control flow constructs and Boolean variables, only. APT rules describe

9.3. PROGRAM REPAIR 153

the temporal safety properties of the API usage as a state machine. The en-
vironment of the device driver (operating system, kernel APIs) is modeled as
a C program invoking the device driver and simulating the kernel behavior.

The instrumented and abstracted code together with the environment
code is then model checked by a separate tool (BEBOP [BRO1]|). If a bug is
found, the abstraction is refined to find the cause of the bug. This abstrac-
tion /refinement loop is continued, until either the bug is confirmed or the
bug is found to be spurious.

Microsoft Code Contracts [ABF*09] provide a language-agnostic way to
express coding assumptions in .NET programs. The contracts take the form
of preconditions, postconditions, and object invariants either stated directly
in the code or in so-called interface contracts. The contracts can be statically
verified, or checked at runtime. In addition, contracts can be used to gener-
ate documentation. Code contracts are similar to the pre- and postconditions
and constraints in the contracts described in this work. Their purpose is to
help developers of .net applications and libraries to statically verify certain
properties of their components, as well as to check the pre- and postcondi-
tions at runtime. The purpose of our work, however, is to guide end-users in
changing component code based on contracts engineered by professional de-
velopers. Out of all tools presented in this section, Microsoft Code Contracts
have the best integration into a development environment (Microsoft Visual
Studio 2010 beta).

9.3 Program Repair

Jobstmann et al. [JGB05,SJB05, GBHWO05| try to fix problems in a program
by building a product of the broken program and the specification. They
regard this as a game, where a winning strategy describes a possible program
repair. Program repair is restricted to changes in assignment statements (only
changes on the left hand side of assignments), without making changes to the
program logic by changing the control flow. Similar to our implementation,
they assume a fault localizer (the state mapping algorithm in our system) to
find the problems beforehand.

Farn et al. [WCO08| define a program repair based on graphical state-
transition specifications. They identify four atomic edit operations on the

154 CHAPTER 9. RELATED WORK

specifications (add and delete states as well as add and delete transitions).
The cost of the program repair solely depends on the number of edit opera-
tions used. The operations all have equal weight. Our approach, in contrast,
uses change operations at a higher level where one operation (e.g., add or
remove a routine call) results in several changes to the structure of the model
of the program. Moreover, our change operations have different weights, thus
favoring certain changes over others.

Error correcting parsers search for changes in an erroneous program to
create a syntactically correct program. Rohrich [R6h80] proposes a method
by which a stack-based parser is able to recover from a syntactic error in
a program by searching for a shortest path of the error state to a terminal
state of the parser (emergency route). This shortest path is then used to find
a match between the next input symbols and the symbols expected on the
states of the path to the terminal state. Symbols found in the input denote
anchors. If an anchor is found, the symbols in the input sequence preceding
the anchor are removed from the input, and symbols on the shortest path in
the parser’s stack automaton are inserted into the input. This approach is
similar to our approach in that it tries to adapt the input sequence (imple-
mentation automaton in our system) to match the parser’s stack automaton
(protocol automaton in our system). In distinction to our approach, Réhrich
uses an emergency route to a terminal state to find a state where parsing can
be resumed.

The problem of program repair is similar to the problem of approzimate
string matching [Nav99|. In approximate string matching, a given string (pat-
tern) is being matched to another string which is equal or similar to the
pattern. The metric of closeness (also referred to as edit distance) describes
the number of mismatching characters in the string, where a mismatch can
be corrected by insertion, removal or substitution of a character. The edit
distance metric most often used is the Levenshtein distance measuring the
number of edit operations necessary to change the string such that it exactly
matches the pattern.

The relation of approximate string matching and program repair is, that
in program repair, the specification forms the pattern which needs to be
matched in a program. If the pattern does not exactly match, a mistake was
found. The changes necessary to repair the program, are the edit operations.
While approximate string matching is able to find matches between a pattern

9.4. PROGRAM VISUALIZATION 155

and a string, it is a memoryless strategy which is not able to perform a
knowledge update due to edit operations. In addition, the restricted set of
edit operations is not sufficient for complex patterns such as contracts with
preconditions and postconditions.

9.4 Program Visualization

Techniques similar to program visualization have been used in teaching and
debugging algorithms [MS93,BS84|. These systems interact with a running
program by either calling the animation part explicitly from the algorithm, or
by binding the values of the variables to properties of the animation. There-
fore, it is necessary to actually execute (and optionally debug) the animated
program. Our system, in contrast, visualizes the states of the components of
a program without executing the code, based on the cursor position in the
code and state information deduced by our static analysis.

Many other tools for algorithm visualization have been proposed. They
mostly aim at helping students learn how to program. These systems can be
categorized into two main categories [UFVI09]:

Script-based Systems. In these systems the user needs to manipulate the
source code of the program/algorithm being visualized. Calls to the
visualization engine are added at certain positions. Executing the pro-
gram then generates a visualization script, which shows the steps the
program has taken (e.g., ANIMAL [RSF00]).

Compiler-based Systems. Compiler-based systems generate algorithm vi-
sualizations without changing the source code of the algorithm. The
interaction with the visualization system is added to the program au-
tomatically by a compiler (e.g., Alice [CDP03]).

We see the program visualization tool developed in this work to be in none
of the established categories. In our system, the source code does not need
to be changed, in order to create a visualization. Furthermore, the compiler
does not adapt the program automatically to interact with the visualization
system. The visualization is solely based on the state mapping algorithm and
its knowledge update steps. We therefore suggest to introduce a new category
for algorithm visualization tools based on static analysis.

156 CHAPTER 9. RELATED WORK

Chapter 10

Summary and Conclusion

This chapter summarizes our approach on using formal methods to guide
end-user programming. It presents the main contributions and recapitulates
the main ideas of semantic assistance. Finally, this thesis is concluded with
an outlook on future work that would make the semantic assistance tools
even more useful.

10.1 Summary

This work presents an approach to support programming in industrial au-
tomation by formal verification techniques. The approach allows specifying
component contracts and constraints which must be obeyed by client pro-
grams and verifies that the client program does not violate them. Based on
this verification approach, semantic assistance tools have been implemented
to support programmers in writing semantically correct programs. The vari-
ous semantic assistance tools help programmers to use routine calls in valid
sequences, repair programs containing semantic errors, and understand a
client program by visualizing the state of the components at a specific loca-
tion in the code.

We have adopted techniques from formal interface specification [dAHO1,
Mey86], model checking [CGP99|, and knowledge changes [KM91] in this
work. Formal interface specification techniques are used to specify sequenc-
ing constraints of components, knowledge about state properties of compo-

157

158 CHAPTER 10. SUMMARY AND CONCLUSION

nents, as well as inter-component constraints. Model checking and artificial
intelligence techniques are then used to verify that a client program obeys
the contracts and constraints.

The approach is based on MONACO, a domain-specific language for ma-
chine automation programming. It allows programming the reactive part of
an automation program and therefore has language constructs to express ma-
chine operation sequences, has strong support for dealing with exceptional
situations and allows parallel activities. The behavioral model of MONACO is
close to StateCharts [Har87|, however, an imperative, Pascal-like style of pro-
gramming is used. Most important, MONACO allows hierarchical abstraction
of control functionality by a component-based approach which allows build-
ing components with interfaces and hierarchical structuring of components,
where upper components are in full control over their subordinates.

Outline of the Approach

Our programming guidance is based on contracts and constraints, which are
formal descriptions of the intended behavior of component interfaces (see Fig-
ure 10.1). MONACO components and their contracts are translated into au-
tomata (1),(2). The state mapping algorithm establishes a mapping between
the states in the automaton of a MONACO component and the automata
of its subcomponents and may find contract violations (3). In addition, the
states of a component are associated with knowledge about the states of its
subcomponents. This information is derived from postconditions in the con-
tracts and conditional statements in the component implementation. Finally,
the state mapping and associated knowledge is used to verify constraints.

The annotated implementation automaton (4) is then used in various
end-user support scenarios. Contract or constraint violations (5) are reported
and highlighted at the respective locations in the code editor. Based on the
contracts and constraints, the system can propose valid routine calls for a
selected location (6). Similarly, a program containing a contract violation can
be automatically repaired, based on repair strategies such that the program
complies with the contracts and constraints(7). Finally, the system uses the
state mapping results at a specific location in the code to visualize the state
of the subcomponents at that location.

10.2. CONTRIBUTIONS 159

Impl. Automaton
5) Semantic

Errors
(4)
\ (3) y (6

State Mapping) — .\I (

9 Annotated N8
(2) Impl. Automaton
- Visualization

~—~

MONACO (1)
Code —

—r

|
\

Proposal

\

Repair
Contracts
Constraints

Protocol Automata

Figure 10.1: Steps in the system for end-user programming guidance.

10.2 Contributions

In the past decade, many verification systems emerged, from general model
checkers like SPIN to specific device driver verifiers like SDV. Still, active
research is going on in this field to provide tools to verify programs written
in general programming languages. To the best of our knowledge, we are
the first to base restricted end-user guidance tools on formal methods and
verification. The contributions of this work are therefore as follows:

e Contracts allowing to specify the valid call sequences of routines as well
as guarantees (postconditions) and required conditions (preconditions).

e Constraints to express safety properties.

e A verification process which checks that a client program obeys con-
tracts and constraints.

e A knowledge deduction process which allows to deduce properties of
components fulfilled at particular code positions in the client applica-
tions.

e Semantic Assistance tools which propose code fragments based on con-
tracts and constraints and aid in repairing client programs.

e A design-time visualization tool to visualize the state of a system at a
position in the code and to help end users understand the program.

160 CHAPTER 10. SUMMARY AND CONCLUSION

10.3 Future Work

Since our system is implemented as a prototype, there are many features that
were not implemented but could help the overall approach to be even more
effective. This section lists ideas for future work.

e Without changing the overall approach, adding support for routine pa-
rameters and local variables could help to get additional information
about the possible control flow.

e Although the current notation of contracts is sufficient to describe all
possible situations expressible by the automata, a more readable, pos-
sibly graphical notation would ease development of contracts. A draft
of a better notation is shown in Listing C.2 in Appendix C.

e Postconditions in the contract give guarantees about component states.
Such a guarantee holds until it is invalidated by more recent knowledge
or it is retracted. Other types of postconditions in a contract would al-
low the system to guarantee knowledge until the next WAl T statement,
or for a certain period of time only.

e Invariants currently only describe invariant knowledge about a single
component. There are situations, in which invariants among several
components can be useful to express physical dependencies among dif-
ferent components.

e Similar to systems like WhyLine [KM09|, we could extend the know-
ledge update to preserve the history of the knowledge. We could then
not only inform the user which knowledge holds at a certain location,
but also give explanations on why particular propositions hold (post-
condition, retraction, control flow conditions). Such information would
ease diagnosis of semantic errors.

10.4 Conclusions

We feel that there is a natural evolution from the early steps of writing
specifications over verification of software systems and debugging to guid-
ance tools and program repair. These tools are valuable not only in the

10.4. CONCLUSIONS 161

domain of machine automation, but also in other domains where restricted
programming by end users is needed, and a similar style of programming is
used. The restricted set of features of MONACO eased much of the language-
specific parts of the tools. Yet, it seems possible to employ similar tools in
more general languages like Java and Cf, and recent research shows first
results [HB0O7, ABFT09).

162 CHAPTER 10. SUMMARY AND CONCLUSION

Appendix A

Keplast Case Study Constraints

CONSTRAI NT (I ScrewCtrl screw, |HeatingCtrl heating)
[NOT (screw.islnFront() AND NOT heati ng.tenpReached())]

Listing A.1: Constraints used in the case study Keplast.

163

164 APPENDIX A. KEPLAST CASE STUDY CONSTRAINTS

Appendix B

Duerr Case Study Constraints

/1l Constraints @ Hydr Sol vent Can
CONSTRAI NT (I Val ve vPSCAi r, | Val ve vPSCSol vent)

[NOT (vPSCAir.1sOpen() AND vPSCSol vent.|sOpen())]
CONSTRAI NT (I Val ve vPSCAi r, | Val ve vPSCDr ai n)

[NOT (vPSCAir.1sOpen() AND vPSCDrain.|sOpen())]
CONSTRAI NT (I Val ve vPSCSol vent, | Val ve vPSCDr ai n)

[NOT (vPSCSol vent. | sQOpen() AND vPSCDrain.|1sOpen())]
CONSTRAI NT (IVal ve vCanSAir, |Valve vCanSFill)

[NOT (vCanSAir.lsOpen() AND vCanSFill.lsOpen())]
CONSTRAI NT (1 Val ve vCanSAir, 1|Val ve vPSCSol vent)

[NOT (vCanSAir.|sOpen() AND vPSCSol vent.|sOpen())]

/] Constraints @ SubChannel @ HOSE 1
CONSTRAI NT (I Val ve vHoselDrain, |Valve vHoselAir)

[NOT (vHoselDrain.lsOpen() AND vHoselAir.|1sOpen())]
CONSTRAI NT (I Val ve vHoselAir, |Valve vHoselCol or)

[NOT (vHoselAir.|IsOpen() AND vHoselCol or.|1sOpen())]

/1 SubChannel @ ATOM ZER
CONSTRAI NT (IVal ve VFMR, 1Val ve vRefl owAi r)

[NOT (VFMR IsOpen() AND vRefl owAir.1sOpen())]
CONSTRAI NT (I Val ve VFMR | Val ve vMai nSol vent AVMR)

[NOT (VFMR I sOpen() AND vMai nSol vent AVMR | sOpen())]

CONSTRAI NT (I Val ve vRefl owAi r, | Val ve VRFMRDr ai n)

165

166 APPENDIX B. DUERR CASE STUDY CONSTRAINTS

[NOT (vRefl owAir.1sOpen() AND vRFMRDrain. | sOpen())]
CONSTRAI NT (I Val ve vMai nSol vent AVMR | Val ve vRFMRDr ai n)
[NOT (vMai nSol vent AVMR | sOpen()
AND VRFMRDr ai n. | sOpen())]

/] Constraints @ Mai nChannel
CONSTRAI NT (I Val ve vSol vent, | Val ve vCol or)
[NOT (vSol vent.|sOpen() AND vCol or.1sOpen())]

/1 Constraints @ Col or Changer

CONSTRAI NT
(I'val ve vCol Grey, |Valve vCol Bl ack, | Val ve vCol Red,
| Val ve vCol Bl ue, 1Valve vCol Green, | Valve vCol Brown,
I Val ve vCol Yel Il ow, |Valve vCol White, |Valve vCol O ange,
| Val ve vCol Pi nk)
[
(vCol Grey. 1 sOpen() AND (NOT vCol Bl ack. 1sOpen()) AND
(NOT vCol Bl ue. I sOpen()) AND (NOT vCol Red. | sOpen()) AND
(NOT vCol Green. | sOpen()) AND (NOT vCol Brown. I sOpen()) AND
(NOT vCol Yel l ow. I sOpen()) AND (NOT vCol White.lsOpen())
AND (NOT vCol Orange. | sOQpen()) AND (NOT vCol Pi nk. 1sOpen())
) OR
(vCol Bl ack. 1 sOpen() AND (NOT vCol G ey.|sOpen()) AND
(NOT vCol Bl ue. 1sOpen()) AND (NOT vCol Red. 1sOpen()) AND
(NOT vCol Green. | sOpen()) AND (NOT vCol Brown. | sOpen()) AND
(NOT vCol Yel | ow. | sOpen()) AND (NOT vCol White.lsOpen())
AND (NOT vCol Orange. | sOQpen()) AND (NOT vCol Pi nk.1sOpen())
) OR
(vCol Bl ue. I sOpen() AND (NOT vCol Bl ack. I sOpen()) AND
(NOT vCol Grey.IsOpen()) AND (NOT vCol Red. | sOpen()) AND
(NOT vCol Green. |1 sOpen()) AND (NOT vCol Brown. I sOpen()) AND
(NOT vCol Yel l ow. I sOpen()) AND (NOT vCol White.lsOpen())
AND (NOT vCol Orange. | sOQpen()) AND (NOT vCol Pi nk.1sOpen())
) OR
(vCol Red. I sOpen() AND (NOT vCol Bl ack. 1sOpen()) AND
(NOT vCol Bl ue. 1sOpen()) AND (NOT vCol Grey.|sOpen()) AND
(NOT vCol Green. | sOpen()) AND (NOT vCol Brown. |1 sOpen()) AND
(NOT vCol Yel l ow. I sOpen()) AND (NOT vCol White.lsOpen())
AND (NOT vCol Orange. | sOpen()) AND (NOT vCol Pi nk. 1sOpen())

167

) OR

(vCol Green. I sOpen() AND (NOT vCol Bl ack. | sOpen()) AND

(NOT vCol Bl ue. 1sOpen()) AND (NOT vCol Red. 1 sOpen()) AND
(NOT vCol Grey. I sOpen()) AND (NOT vCol Brown. | sQpen()) AND
(NOT vCol Yel | ow. I sOpen()) AND (NOT vCol Wi te.lsOpen())
AND (NOT vCol Orange. | sOpen()) AND (NOT vCol Pi nk. I sOpen())
) OR

(vCol Brown. I sOpen() AND (NOT vCol Bl ack. | sOpen()) AND

(NOT vCol Bl ue. I sOpen()) AND (NOT vCol Red. | sOpen()) AND
(NOT vCol Green. 1 sCpen()) AND (NOT vCol Grey. |l sOpen()) AND
(NOT vCol Yel Il ow. I sOpen()) AND (NOT vCol White.lsOpen())
AND (NOT vCol Orange. | sOpen()) AND (NOT vCol Pi nk. 1 sOpen())
) OR

(vCol Yel | ow. | sOpen() AND (NOT vCol Bl ack. | sOpen()) AND
(NOT vCol Bl ue. 1sOpen()) AND (NOT vCol Red. 1 sOpen()) AND
(NOT vCol Green. I sOpen()) AND (NOT vCol Brown. | sOpen()) AND
(NOT vCol Grey. I sOpen()) AND (NOT vCol Wiite.lsQpen()) AND
(NOT vCol Orange. 1 sOpen()) AND (NOT vCol Pi nk.1sOpen())

) OR

(vCol White.lsOpen() AND (NOT vCol Bl ack. | sOpen()) AND

(NOT vCol Bl ue. I sOpen()) AND (NOT vCol Red. | sOpen()) AND
(NOT vCol Green. 1 sOpen()) AND (NOT vCol Brown. | sOpen()) AND
(NOT vCol Yel | ow. I sOpen()) AND (NOT vCol Grey.|sOpen()) AND
(NOT vCol Orange. | sOpen()) AND (NOT vCol Pi nk.1sOpen())

) OR

(vCol Orange. | sOpen() AND (NOT vCol Bl ack. | sOpen()) AND
(NOT vCol Bl ue. 1 sOpen()) AND (NOT vCol Red. 1 sOpen()) AND
(NOT vCol Green. |1 sCOpen()) AND (NOT vCol Brown. | sOpen()) AND
(NOT vCol Yel Il ow. I sOpen()) AND (NOT vCol White.lsOpen())
AND (NOT vCol Grey. | sOpen()) AND (NOT vCol Pi nk. 1 sOpen())

) OR

(vCol Pi nk. I sOQpen() AND (NOT vCol Bl ack. 1 sOpen()) AND

(NOT vCol Bl ue. 1 sOpen()) AND (NOT vCol Red. 1 sOpen()) AND
(NOT vCol Green. I sOpen()) AND (NOT vCol Brown. | sOpen()) AND
(NOT vCol Yel | ow. I sOpen()) AND (NOT vCol Wi te.lsOpen())
AND (NOT vCol Orange. | sOpen()) AND (NOT vCol Grey. | sOpen())
) OR

(NOT vCol Grey. I sOpen() AND NOT vCol Bl ack. | sOpen() AND
NOT vCol Bl ue. I sOpen() AND NOT vCol Red. | sOpen() AND

168 APPENDIX B. DUERR CASE STUDY CONSTRAINTS

NOT vCol Green. |1 sCpen() AND NOT vCol Brown. | sQpen() AND
NOT vCol Yel | ow. 1 sOpen() AND NOT vCol White.lsOpen() AND
NOT vCol Orange. 1 sOpen() AND NOT vCol Pi nk.1sOpen())

]

Listing B.1: Constraints used in the case study Duerr.

Appendix C

EBNF Protocol Contract
Notation

Listing C.1 lists the grammar of the EBNF protocol contract notation.

SpecEBNF =
"EBNF" ldentifier "=" SpecBlock "."

SpecBl ock = SpecStnts .

SpecStnts = { SpecStnt }
SpecStnt =
(
Rout i neCal |

|
"(" SpecStnts

(
{ "|" SpecStms }

|
{ "||" SpecStnts }

)
"y

"[" SpecStnts "]"
"{" SpecStnts "}"

169

170 APPENDIX C. EBNF PROTOCOL CONTRACT NOTATION

)
["on" Event Condition SpecStmt]

Event Condition = ldentifier

Routi neCall = ldentifier

Listing C.1: EBNF Protocol Contract Notation.

Listing C.2 lists a draft of alternative productions for the grammar of
the EBNF protocol contract notation. These alternative productions allow
to state invariants, preconditions, and postconditions.

SpecEBNF =
"EBNF' ["<" "lnvariant" ":" Condition ">"]
Identifier "=" SpecBlock "."
RoutineCall = ldentifier
{
nn
("Pre" | "Post" | "Retract")
":" Condition
non
}

[+ Due to reuse of Monaco condition parser, conditions */
[+ are parsed as strings. */
Condition = { ANY }

Listing C.2: Draft of alternative Routi neCal | and SpecEBNF produc-

tions with conditions.

Appendix D

Detailed Protocol Contract
Notation

Listing D.1 lists the grammar of the detailed protocol contract notation. The
detailed protocol contract notation allows specifying pre- and postconditions
as well as initial and invariant conditions.

SpecDetai |l =

"Interface" ldentifier [ldentifier]

{"[" "lInvariant” ":" Condition "]" } ":"

{
["final"] ["initial"] ldentifier { StateCondition }
{

Identifier "." [ldentifier] ("!"|"?") ldentifier

}

}

StateCondition = "["
("Pre" | "Post" | "Retract") ":" Condition "]"

/* Due to reuse of Monaco condition parser, conditions =/
[+ are parsed as strings. */
Condition = { ANY }

Listing D.1: Detailed Protocol Contract Notation.

171

172 APPENDIX D. DETAILED PROTOCOL CONTRACT NOTATION

Appendix E

Constraint Notation

Listing E.1 lists the grammar of the constraint notation.

Constraint =
" CONSTRAI NT"
"
Identifier ldentifier
{ "," ldentifier Identifier>}
nyn

"[" Condition "]"

/* Due to reuse of Monaco condition parser, conditions =/
/* are parsed as strings. */
Condition = { ANY }

Listing E.1: Constraint Notation in EBNF.

173

174 APPENDIX E. CONSTRAINT NOTATION

List of Listings

4.1
4.2
4.3
4.4
4.5
4.6
5.1
0.2
5.3
5.4
2.9
2.6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
7.1
7.2
8.1
9.1
Al
B.1
C.1
C.2

Invariant describing isOpen and isClosed exclusion 52
Interface of a cylinder component 53
Interfaces of a driller and a cooler component 55
Contract for I Dri | | er in EBNF notation 58
Contract for I Dri | | er in detailed protocol contract notation 59
Driller/Cooler constraint 60
Calling a ROUTI NE of a subcomponent 64
Calling two ROUTI NEs of a subcomponent 66
A MoNAco WAI T statement waiting for a subcomponent. . . 68
VWAHI LE statement Lo 71
PARALLEL statement 71
ONhandler. 74
Partial implementation of the driller component. 86
Generating knowledge from a protocol automaton. 90
Generating knowledge from the implementation automaton. . 92
Example code showing retraction of knowledge. 93
Example code for knowledge update with invariants. 95
Driller/Cooler constraint. 98
Yices input for checking a constraint. 98
Unreachable code. oo 99
Example code for valid routine calls. 107
Example code for valid routine calls. 108
Constraints for the component Hydr Sol vent Can. 139
Cecil constraint for a file operation routines 148
Constraints used in the case study Keplast. 163
Constraints used in the case study Duerr. 165
EBNF Protocol Contract Notation. 169
Draft of alternative EBNF notation.. 170

175

176 LIST OF LISTINGS

D.1 Detailed Protocol Contract Notation. 171
E.1 Constraint Notation in EBNF. 173

Bibliography

[ABFT09] M. Andersen, M. Barnett, M. Fahndrich, K. King, B. Grunke-

meyer, and F. Logozzo. Code contracts, Microsoft Research. URL,
http://research.microsoft.com/projects/contracts/, 2009.

[AGMS85] C.E. Alchourron, P. Gérdenfors, and D. Makinson. On the logic of

IALO4]

[ASMSO]

theory change: Partial meet functions for contraction and revision.
Journal of Symbolic Logic, (50):510-530, 1985.

Johna Arthorne and Chris Laffra. Official Eclipse 3.0 FAQs.
Addison-Wesley, 2004.

Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer.
Specification language. In On the Construction of Programs, pages
343-410. Cambridge University Press, New York, NY, USA, 1980.

[BBCT06] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin,

[BBLOS]

[BCS5|

Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K.
Rajamani, and Abdullah Ustuner. Thorough static analysis of de-
vice drivers. In FuroSys 06: Proceedings of the 1st ACM SIGOP-

S/EuroSys European Conference on Computer Systems 2006, pages
73-85, New York, NY, USA, 2006. ACM.

Robert Brummayer, Armin Biere, and Florian Lonsing. Btor: Bit-
precise modelling of word-level problems for model checking. In
Proc. 1st Intl. Workshop on Bit-Precise Reasoning, 2008.

Gérard Berry and Laurent Cosserat. The Esterel synchronous pro-
gramming language and its mathematical semantics. In Seminar
on Concurrency, Carnegie-Mellon University, pages 389-448, Lon-
don, UK, 1985. Springer-Verlag.

177

http://research.microsoft.com/projects/contracts/

178 BIBLIOGRAPHY

[BCCI8| Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compo-
sitional reasoning in model checking, 1998.

[BCFT08] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Al-
berto Griggio, and Roberto Sebastiani. The MathSAT 4 SMT
solver. In CAV ’08: Proceedings of the 20th international conference
on Computer Aided Verification, pages 299-303, Berlin, Heidelberg,
2008. Springer-Verlag.

[BHIMO07| Dirk Beyer, T. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker BLAST: Applications to software en-
gineering. International Journal on Software Tools for Technology

Transfer (STTT), 9(5-6):505-525, 2007.
[Bie08] Armin Biere. Lecture notes: model checking, JKU Linz, 2008.

[Bje05] Per Bjesse. What is formal verification? SIGDA Newsl., 35(24):1,
2005.

[BJK*05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Alexander
Pretschner, and Martin Leucker. Model-Based Testing of Reactive

Systems: Advanced Lectures (Lecture Notes in Computer Science).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[BLRT04] Mike Barnett, K. Rustan M. Leino, K. Rustan, M. Leino, and
Wolfram Schulte. The Specf programming system: An overview.
pages 49-69. Springer, 2004.

[BRO1] Thomas Ball and Sriram K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN ’01: Proceedings of
the 8th international SPIN workshop on Model checking of software,
pages 103-122. Springer-Verlag New York, Inc., 2001.

[Bri09] Walter Bright. Contract programming, Digital Mars. URL,
http://www.digitalmars.com/d/2.0/dbc.html, 2009.

[BS84] Marc H. Brown and Robert Sedgewick. A system for algorithm
animation. SIGGRAPH Comput. Graph., 18(3):177-186, 1984.

[CDP03] Stephen Cooper, Wanda Dann, and Randy Pausch. Using animated
3d graphics to prepare novices for cs1. Computer Science Education
Journal, 13:28-29, 2003.

http://www.digitalmars.com/d/2.0/dbc.html

BIBLIOGRAPHY 179

[CGPYY]

[CLOO]

[dAHO1]

[AAHO5)

[Das03]

[DAMO6]

[dMBOS]

[DP60]

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.
M.I.T. Press, 1999.

Edmund Clarke and Yuan Lu. Counterexample-guided abstrac-
tion refinement. In Computer Aided Verification, pages 154-169.
Springer, 2000.

L. de Alfaro and T. Henzinger. Interface automata. In Proceed-
ings of the Ninth Annual Symposium on Foundations of Software
Engineering, pages 109-120. ACM Press, 2001.

L. de Alfaro and T. Henzinger. Interface-based design. In Engineer-
ing Theories of Software-intensive Systems, NATO Science Series:
Mathematics, Physics, and Chemistry 195, pages 83-104. Springer,
2005.

Satyaki Das. Predicate abstraction. PhD thesis, Stanford Univer-
sity, Stanford, CA, USA, 2003.

Bruno Dutertre and Leonardo de Moura. The Yices SMT solver.
Tool paper at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An Efficient SMT
Solver, volume 4963/2008 of Lecture Notes in Computer Science,
pages 337-340. Springer Berlin, April 2008.

Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201-215, 1960.

[GBHWO05] A. Griesmayer, R. Bloem, M. Hautzendorfer, and F. Wotawa.

Formal verification of control software: A case study. In 18th In-
ternational Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems., pages 783-788, Bari,
Italy, 2005. Springer.

[GKOTO00] Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar

[Har87]

Thiele, editors. Abstract State Machines, Theory and Applications,
volume 1912 of Lecture Notes in Computer Science. Springer, 2000.

David Harel. Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8(3):231-274, 1987.

180

[HBO7]

BIBLIOGRAPHY

Graham Hughes and Tevfik Bultan. Interface grammars for mod-
ular software model checking. In ISSTA ’07: Proceedings of the
2007 international symposium on Software testing and analysis,
pages 39-49, New York, NY, USA, 2007. ACM.

[HIMS03] Thomas Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. Software verification with BLAST. page 624. 2003.

[HMPO1| Thomas Henzinger, Marius Minea, and Vinayak Prabhu. Assume-

[Hol03]

[HR99)

[Hur06]

[HWO08]|

[TEC03]

[ISO964]

[ISO96b)

[7GBO3|

[Jin07]

guarantee reasoning. In HSCC. Volume 2034 of LNCS, pages 275—
290. Springer, 2001.

Gerard J. Holzmann. The SPIN Model Checker: Primer and Ref-
erence Manual. Addison-Wesley Professional, September 2003.

Andreas Herzig and Omar Rifi. Propositional belief base update
and minimal change. Artificial Intelligence, pages 107-138, 1999.

D. Hurnaus. Eine doménenspezifische Programmiersprache fiir
Maschinensteuerungen: Entwurf eines Compilers und einer Aus-
fiihrungsumgebung, Master thesis, June 2006.

D. Hurnaus and C. Wirth. Model-based generation of domain-
specific program environments. In Workshop on Generative Tech-
nologies, Part of ETAPS 2008, pages 76—77, Budapest, 2008.

IEC. Norm IEC-61131-3 - programmable controllers - part 3: Pro-
gramming languages, 2003.

ISO. Vienna development method — specification language — part
1: Base language, Dec. 1996.

ISO/IEC. ISO/IEC 14977 Extended BNF, Dec. 1996.

B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a
game. In 17th Conference on Computer Aided Verification (CAV
'05), pages 226-238. Springer-Verlag, 2005. LNCS 3576.

Ying Jin. Formal verification of protocol properties of sequential
Java programs. Computer Software and Applications Conference,
Annual International, 1:475-482, 2007.

BIBLIOGRAPHY 181

[KM8]

[KMO1]

[KMO9]

[Kof07]

[KPS0g]

[McM92]

[Mey86]|

[Mey92]

[Mil89]

[MS93]

H. Katsuno and A. O. Mendelzon. A unified view of propositional
knowledge base updates. In Proc. of the 11th IJCAI, pages 1413~
1419, Detroit, MI, USA, 1989.

Hirofumi Katsuno and Alberto O. Mendelzon. On the difference
between updating a knowledge base and revising it. pages 387-394.
Morgan Kaufmann, 1991.

Andrew J. Ko and Brad A. Myers. Finding causes of program
output with the Java Whyline. In CHI ’09: Proceedings of the 27th
international conference on Human factors in computing systems,
pages 1569-1578, New York, NY, USA, 2009. ACM.

Jan Kofron. Checking software component behavior using behavior
protocols and SPIN. In SAC ’07: Proceedings of the 2007 ACM
symposium on Applied computing, pages 1513-1517, New York, NY,
USA, 2007. ACM.

Jan Kofroni, Tomas Poch, and Ondiej Sery. TBP: Code-oriented
component behavior specification. In 32nd Annual IEEE Software
Engineering Workshop, pages 0-0, 2008.

K.L. McMillan. Symbolic Model Checking — An approach to the
state explosion problem. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1992.

Bertrand Meyer. Design by contract. Technical Report TR-EI-
12/CO, Interactive Software Engineering Inc., 1986.

Bertrand Meyer. Eiffel the language. Prentice Hall, 1992.

R. Milner. Communication and concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

Sougata Mukherjea and John T. Stasko. Applying algorithm an-
imation techniques for program tracing, debugging, and under-
standing. In ICSE ’93: Proceedings of the 15th international con-
ference on Software Engineering, pages 456-465, Los Alamitos, CA,
USA, 1993. TEEE Computer Society Press.

182 BIBLIOGRAPHY

[Nav99] Gonzalo Navarro. A guided tour to approximate string matching.
ACM Computing Surveys, page 2001, 1999.

[0O090] Kurt M. Olender and Leon J. Osterweil. Cecil: A sequencing con-
straint language for automatic static analysis generation. IEFE
Trans. Softw. Eng., 16(3):268-280, 1990.

[0092] K. M. Olender and Leon J. Osterweil. Interprocedural static anal-
ysis of sequencing constraints. ACM Trans. Softw. Eng. Methodol.,
1(1):21-52, 1992.

[PHMO06| H. Préhofer, D. Hurnaus, and H. Mdssenbock. Building end-user
programming systems based on a domain-specific language. 6th
OOPSLA Workshop on Domain-Specific Modeling, Oct 2006.

[PHST08a] H. Prahofer, D. Hurnaus, R. Schatz, C. Wirth, and H. Mdossen-
bock. A DSL approach for programming automation systems. In

Proc. of SE2008 — Conference on Software Engineering 2008, pages
9242-256, 2008.

[PHS*08b| H. Préhofer, D. Hurnaus, R. Schatz, C. Wirth, and H. Mdssen-
bock. The language Monaco. Internal Report (to appear), Chris-

tian Doppler Laboratory for Automated Software Engineering,
Linz, Austria, 12 2008.

[PHST08¢c| H. Priahofer, D. Hurnaus, R. Schatz, C. Wirth, and H. Mdossen-
bock. Software support for building end-user programming envi-
ronments in the automation domain. In WEUSFE ’08: Proceedings
of the 4th international workshop on End-user software engineer-
ing, pages 76-80, New York, NY, USA, 2008. ACM.

[PHWMO07| H. Prihofer, D. Hurnaus, C. Wirth, and H. Mdssenbock. The
domain-specific language Monaco and its visual interactive pro-
gramming environment. In Proceedings of Visual Languages and
Human-Centric Computing 2007. IEEE Computer Society, 2007.

[PJP06] Jan Kofron Pavel Jezek and Frantisek Plasil. Model checking of
component behavior specification: A real life experience. Flectronic
Notes in Theoretical Computer Science, 160:197-210, 2006.

BIBLIOGRAPHY 183

[PV02)

[Rei01]

[R6h80]

[RSFO0]

[Sif01]

[SIBO5]

[Str09]

Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for
software components. IEEE Trans. Softw. Eng., 28(11):1056-1076,
2002.

Raymond Reiter. Knowledge in action: logical foundations for spec-
ifying and implementing dynamical systems. M.I.T. Press, Cam-
bridge, Mass., 2001.

Johannes Rohrich. Methods for the automatic construction of error
correcting parsers. Acta Informatica, (13):115-139, 1980.

G. RoRkling, M. Schiiler, and B. Freisleben. The animal algorithm
animation tool. In 5th Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2000), pages 37-40, 2000.

Joseph Sifakis. Modeling real-time systems — challenges and work
directions. Lecture Notes in Computer Science, 2211:373ff., 2001.

S. Staber, B. Jobstmann, and R. Bloem. Diagnosis is repair. In 16th
International Workshop on Principles of Diagnosis, pages 169-174,
Monterey, California, USA, June 2005. Poster.

J. Strassmayr, Gasi. Zustandsvisualisierung von Steuerungssoft-
ware basierend auf statischer Programmanalyse und Verifikation,
June 2009.

[UFVI09] Jaime Urquiza-Fuentes and J. Angel Velazquez-Iturbide. A survey

[VHOO]

[WCo8]

[Win90]

of successful evaluations of program visualization and algorithm
animation systems. Trans. Comput. Educ., 9(2):1-21, 20009.

Willem Visser and Klaus Havelund. Model checking programs. In
Automated Software Engineering Journal, pages 3—12. Press, 2000.

Farn Wang and Chih-Hong Cheng. Program repair suggestions
from graphical state-transition specifications. In FORTE ’08: Pro-
ceedings of the 28th IFIP WG 6.1 international conference on For-
mal Techniques for Networked and Distributed Systems, pages 185—
200, Berlin, Heidelberg, 2008. Springer-Verlag.

Marianne Winslett. Updating logical databases. Cambridge Univer-
sity Press, New York, NY, USA, 1990.

Dominik Hurnaus Weichsberg 22
+43 650 723 6 723 4160 Schlagl
dominik.hurnaus@gmail.com Austria

Curriculum Vitae
October 2009

Work Experience

Sep. 2009 — ... e Software Engineer at Catalysts GmbH, Linz

Sep. 2006 — ... o Software Engineer Freelancer

Aug. 2006 — March 2009 e Research assistant and Ph.D. student at the Christian Doppler Laboratory for Auto-
mated Software Engineering, Johannes Kepler University and KEBA AG, Linz

March 2006 — June 2006 e Master student at the Christian Doppler Laboratoy for Automated Software Engineer-
ing, Johannes Kepler University and KEBA AG, Linz

Nov. 2005 — Feb. 2006 e Internship as Software Engineer, BMW AG, Data bus analysis tools, Dingolfing, Ger-
many
July 2005 — Oct. 2005 e Internship as Software Engineer in Testing, Office Server, Microsoft Corporation, Red-

mond, WA, USA

July 2003 — March 2005 e Application Developer, VOEST Alpine Industricanlagenbau, Linz (part-time from Oc-
tober 2003)

March 2004 — July 2004 e Freelancer: development of a planning tool for hydraulic facilities for VOEST Alpine
Industrieanlagenbau (division continuous casting), Linz

Feb. 2002 — Feb. 2003 e Course instructor 'Fachakademie fiir angewandte Informatik 4. Semester’ (Visual Basic,
C+#), WIFI Linz
July 2001 — Dec. 2001 e Network technician (international experience: Russia, Brasil) VOEST Alpine Indus-

trieanlagenbau, Linz

Education

2006 — 2009 e Ph.D. studies, Johannes Kepler University, Linz

2002 — 2006 e Software Engineering, University of Applied Sciences, Hagenberg, summa cum laude
1996 — 2001 e Higher-level secondary commercial college, Rohrbach, summa cum laude

1992 - 1996 e Lower grade highschool, Rohrbach

	Acknowledgment
	Kurzfassung
	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Outline of our Approach
	1.3 Project History
	1.4 Structure of the Thesis

	2 State of the Art
	2.1 Code Completion
	2.2 Formal Methods
	2.2.1 Model Checking
	2.2.2 Formal Specifications
	2.2.3 Satisfiability

	2.3 Belief Revision and Belief Update
	2.3.1 Definitions
	2.3.2 Belief Revision
	2.3.3 Belief Update
	2.3.4 Winslett's Standard Semantics
	2.3.5 Example
	2.3.6 The Frame Problem
	2.3.7 Open vs. Closed World Assumption

	3 Monaco
	3.1 Design Goals
	3.2 Component Approach
	3.2.1 Interface Declarations
	3.2.2 Component Implementations
	3.2.3 Static Configuration

	3.3 Reactive System Programming
	3.3.1 Control Routines
	3.3.2 Imperative Statements
	3.3.3 Conditional WAIT
	3.3.4 Asynchronous Event Handling
	3.3.5 Parallel Execution Threads
	3.3.6 Event Signals

	3.4 Execution Semantics
	3.4.1 Synchronous Routine Calls
	3.4.2 Cooperative Multitasking With Fairness
	3.4.3 Event Broadcast

	3.5 Example Control Program
	3.5.1 Example System
	3.5.2 Component Hierarchy
	3.5.3 Control Components

	4 Contracts and Constraints
	4.1 Introduction
	4.2 Automata Formalism
	4.3 Interface Contract
	4.3.1 Pre-, Post-, and Initial-Conditions
	4.3.2 Invariants
	4.3.3 Summary
	4.3.4 Examples

	4.4 Constraints
	4.5 Notations
	4.5.1 EBNF Notation
	4.5.2 Detailed Protocol Contract Notation
	4.5.3 Constraint Notation

	5 Implementation Automaton
	5.1 Automata Formalism
	5.2 From Monaco to an Automaton
	5.2.1 Routine Calls
	5.2.2 Statement Sequences
	5.2.3 Wait Statement
	5.2.4 Branch Statement
	5.2.5 Repetitions
	5.2.6 Parallel Statement
	5.2.7 Asynchronous Event Handling

	5.3 Automata Refinement

	6 Verification Approach
	6.1 Overview
	6.2 State Mapping
	6.2.1 Weak Simulation
	6.2.2 Approach
	6.2.3 Algorithm
	6.2.4 Example

	6.3 Knowledge Update
	6.3.1 Knowledge Change Operators
	6.3.2 Example
	6.3.3 Algorithm

	6.4 Constraint Checking
	6.5 Reachability Analysis
	6.6 Checking Component Contracts
	6.6.1 Checking Component Postconditions
	6.6.2 Checking Unchanged State Properties

	7 Semantic Assistance
	7.1 Search for Proposals
	7.1.1 Examples
	7.1.2 Interactive Assistance

	7.2 Program Repair
	7.2.1 Goals
	7.2.2 Repair Strategies
	7.2.3 Algorithm

	7.3 Program State Visualization
	7.3.1 Overview
	7.3.2 Knowledge Deduction
	7.3.3 Visualization

	8 Case Studies and Evaluation
	8.1 Keplast Injection Molding Machine
	8.1.1 Contracts
	8.1.2 Constraints
	8.1.3 End-User Support

	8.2 Duerr Paint Supply System
	8.2.1 Monaco Application
	8.2.2 Contracts
	8.2.3 Constraints
	8.2.4 End-User Support

	8.3 Program State Visualization Evaluation
	8.3.1 Program Visualization Guiding End-User Programming
	8.3.2 Program Visualization Helping Program Understanding

	9 Related Work
	9.1 Verification of Call Sequences
	9.1.1 Cecil/Cesar
	9.1.2 Behavior Protocols
	9.1.3 Interface Grammar

	9.2 Checking Safety Properties
	9.3 Program Repair
	9.4 Program Visualization

	10 Summary and Conclusion
	10.1 Summary
	10.2 Contributions
	10.3 Future Work
	10.4 Conclusions

	A Keplast Case Study Constraints
	B Duerr Case Study Constraints
	C EBNF Protocol Contract Notation
	D Detailed Protocol Contract Notation
	E Constraint Notation
	Bibliography

