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Prof. Dr. Armin Biere

Mitwirkung:

Dipl.-Ing. Dr. Herbert Prähofer

Linz, Oktober 2009



Eidesstattli
he Erklärung
I
h erkläre an Eides statt, dass i
h die vorliegende Dissertation selbständigund ohne fremde Hilfe verfasst, andere als die angegebenen Quellen undHilfsmittel ni
ht benutzt bzw. die wörtli
h oder sinngemäÿ entnommenenStellen als sol
he kenntli
h gema
ht habe.

Linz, Oktober 2009 DI (FH) Dominik Hurnaus

i



ii



A
knowledgment
I wish to thank all those who helped me. Without them, I 
ould not have
ompleted this thesis. First and foremost, I thank my advisor Prof. HanspeterMössenbö
k and Dr. Herbert Prähofer for their support and 
omments onideas, papers and this thesis.I am parti
ular grateful to Dr. Herbert Prähofer for 
ommenting on draftsof the thesis and enhan
ing the quality of this work. Without his helpful
omments and dis
ussions this work would not have been possible. LikewiseI thank Prof. Armin Biere for taking the responsibility of the se
ond thesisadvisor and dissertation 
ommittee member.Spe
ial thanks go to my friends and 
olleagues DI Markus Löberbauer,DI Roland S
hatz, DI Christian Wirth, and DI Reinhard Wol�nger for thefruitful dis
ussions whi
h helped to develop ideas put forward in the thesis.Likewise I thank Johannes Gasi Straÿmayr for his 
ontributions to the pro-gram visualization tool and for helping 
arrying out the evaluation studies.This work has been 
ondu
ted in the module "Domain-Spe
i�
 Languagesfor Industrial Automation" at the Christian Doppler Laboratory for Auto-mated Software Engineering in 
ooperation with KEBA AG. Therefore, Iwant to thank KEBA AG and the Christian Doppler Fors
hungsgesells
haftfor funding the proje
t and our 
onta
t persons at KEBA AG, Dr. ErnstSteller, Dr. Mi
hael Garstenauer, and DI Gottfried S
hmidleitner for their
ontinuous support.My deepest and sin
ere thanks go to my girlfriend Juliane for her love andpatien
e. She 
ontinuously en
ouraged me to do my best and she was alwaysthere when I needed her most. Finally, I would like to thank everyone who
ontributed to this thesis and espe
ially my family for their great supportduring the years of study. i



ii ACKNOWLEDGMENT



Kurzfassung
In der Industrieautomation müssen Endbenutzer oft kleinere Änderungen anSteuerungsprogrammen der Mas
hinen vornehmen. Diese Endbenutzer sindmeist Mas
hinenbediener, die wenig bis gar keine Programmierkompetenzhaben. Denno
h müssen sie in si
herheitskrits
he Steuerungsprogramme ein-greifen, bei denen Testläufe ni
ht mögli
h sind.Der in dieser Arbeit bes
hriebene Ansatz wird basiert auf Veri�kation vonSteuerungsprogrammen. Mittels Veri�kation wird bewiesen, dass ein Softwa-resystem bestimmte Eigens
haften in jeder mögli
hen Ausführung einhält.Für die Veri�kation von Software ist es notwendig, die gewüns
hten Eigen-s
haften der Software in Kontrakten zu bes
hreiben. Die Kontrakte, die indieser Arbeit verwendet werden, bes
hreiben gültige Aufru�olgen und Ein-s
hränkungen.Semanti
 Assistan
e - ein neues Konzept, das in dieser Arbeit vorgestelltwird - verwendet die Ergebnisse der Veri�kation, um Endbenutzern bei derProgrammierung zu helfen. Diese Hilfe umfasst interaktive Unterstützungbei Programmänderungen, Vors
hläge gültiger Programmteile sowie Visua-lisierung von Zuständen von Mas
hinenkomponenten. Im Falle einer Verlet-zung der Kontrakte können automatis
he Programmänderungen vorges
hla-gen werden, die die Programmfehler korrigieren.Veri�kation und Semanti
 Assistan
e wurden in die Entwi
klungsumge-bung der domänenspezi�s
hen Spra
he Mona
o integriert. Fallstudien zei-gen, dass der Ansatz von Kontrakten und Semanti
 Assistan
e praktikabelist. Darüber hinaus wurde festgestellt, dass Eins
hränkungen auf Mona
oSystemen unkompliziert gefunden werden können und die statis
he Überprü-fung dieser Eins
hränkungen die Laufzeitressour
e der Steuerungshardwareentlasten. iii
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Abstra
t
In the �eld of industrial automation end users often have the task of making
hanges and small adaptations to 
ontrol programs of their ma
hines. Theseend users (ma
hine operators) usually la
k software engineering expertise, yetthey have to intervene in safety-
riti
al, highly dependable systems where itis not possible to run any o�ine tests.Veri�
ation is used to proof that spe
i�
 properties of software systemshold in every possible exe
ution of the system. This is in 
ontrast to testing,whi
h 
an only show that a property holds in a given situation with a de-�ned input. For software veri�
ation it is ne
essary to formally des
ribe theseproperties in 
ontra
ts, 
ontaining possible 
all sequen
es and 
onstraints onsystem states. Information of the intermediate steps of the veri�
ation pro-
ess are stored with the software implementation to be reused later.Semanti
 Assistan
e - a new 
on
ept introdu
ed in this thesis - uses theresults of a veri�
ation pro
ess to give guidan
e to end-user programmers.This guidan
e ranges from intera
tive assistan
e on valid routine 
alls tovisualization of program states in form of a s
hemati
 view of the ma
hine. In
ase of a 
ontra
t violation, it is possible to automati
ally generate programrepair proposals to eliminate the violation.Veri�
ation and Semanti
 Assistan
e are integrated into the Mona
oIDE, a system for 
reating 
ontrol programs with the domain-spe
i�
 lan-guageMona
o. Case studies and evaluation results show that this approa
his feasible for di�erent types of 
ontrol programs. Furthermore, we experi-en
ed that �nding 
onstraints of systems is un
omplex and 
he
king these
onstraints stati
ally removes substantial runtime overhead.

v
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Chapter 1Introdu
tion
This thesis presents 
on
epts and tools supporting end-user programmingof industrial automation solutions. In industrial automation the end users,whi
h 
an be domain experts or less experien
ed operators at a ma
hine, oftenhave to make 
hanges to the 
ontrol programs of their ma
hine automationsolutions. Those people � while they need to intervene in safety-
riti
alsystems � usually la
k software engineering expertiese. Moreover, they oftenhave to modify programs on a running ma
hine and make those 
hangese�e
tive without a 
han
e to run o�ine tests or try the 
hanged program ina test environment.We have observed that in su
h a setting 
onstraints on the operations aswell as dependen
ies between ma
hine 
omponents apply in an obvious andnatural way. Those are 
onstraints on valid sequen
es of operations of 
ompo-nents and inter-dependen
ies between operations of 
omponents. Instead ofhaving these ta
it assumptions reside in the minds of end-user programmers,they should be formalized and used to 
onstrain end-user programmers soviolations 
annot o

ur in the �rst pla
e.The work presented in this thesis adopts te
hniques from formal interfa
espe
i�
ation [dAH01,Mey86℄, model 
he
king [CGP99℄, and arti�
ial intelli-gen
e [KM91℄ to make this support possible. Formal interfa
e spe
i�
ationte
hniques are used to spe
ify the sequen
ing 
onstraints of 
omponent 
alls,knowledge about state properties of 
omponents, as well as inter-
omponent
onstraints. Model 
he
king and arti�
ial intelligen
e te
hniques are thenused to verify that a 
lient program obeys these spe
i�
ations and 
onstraints.1



2 CHAPTER 1. INTRODUCTIONBased on these te
hniques, we have introdu
ed means to support endusers in programming, whi
h we 
all Semanti
 Assistan
e. This works similarto 
ode assist te
hniques (Visual Studio IntelliSense, E
lipse 
ontent assist,...) where programmers get suggestions of synta
ti
ally 
orre
t method 
allsbased on the 
urrent 
ode position. Semanti
 Assistan
e, however, is basedon semanti
 knowledge represented in 
omponent 
ontra
ts.1.1 Ba
kground and MotivationThe work is based on the domain-spe
i�
 language Mona
o [PHM06,PHWM07,PHS+08a℄ whi
h is des
ribed in Chapter 3 of this thesis.Mona
o (Modeling N otation for Automation Control) is a domain-spe
i�
 language for ma
hine automation programming. It allows program-ming the rea
tive part of an automation solution. It therefore has language
onstru
ts to express ma
hine operation sequen
es, has strong support fordealing with ex
eptional situations and allows parallel a
tivities. The behav-ioral model of Mona
o is 
lose to StateCharts [Har87℄, although it uses animperative, Pas
al-like style of programming.The most essential statements in the Mona
o language are syn
hronousroutine 
alls whi
h exe
ute 
ontrol tasks, WAIT statements for implement-ing wait 
onditions, and the PARALLEL statement used to allow 
on
urrentexe
ution of several a
tivities. Additionally, ON-handlers, 
an be used to im-plement rea
tions to ex
eptional situations.An important language feature is the 
omponent-based approa
h, i.e.,
omponents are modular units whi
h ex
lusively 
ommuni
ate over de�nedinterfa
es. Stri
t 
orresponden
e between the hardware 
omponents of thema
hine and the software 
omponents 
ontrolling the ma
hine parts is pur-sued. The interfa
e spe
i�
ations in Mona
o 
onsist of (1) routines whi
hrepresent the a
tions and tasks that 
an be ful�lled by this 
omponent, and(2) fun
tions whi
h allow a

essing state properties. That means, routinesspe
ify how a 
omponent 
an be 
ontrolled and fun
tions spe
ify the feed-ba
k a 
omponent provides.Moreover, 
omponents are arranged in a hierar
hi
al fashion of superor-dinate and subordinate 
omponents whi
h re�e
ts the hierar
hi
al stru
ture



1.2. OUTLINE OF OUR APPROACH 3of the real ma
hine and a

ounts for the hierar
hi
al nature of 
ontrol tasks.Components that are the leaves of the 
omponent hierar
hy are 
alled native
omponents and are implemented in a native language of the 
ontrol ma
hine(e.g., C++) to interfa
e with the hardware or lower 
ontrol layers. Higher upin the hierar
hy there are several 
oordination 
omponents whi
h 
oordinateand supervise the operations of their sub
omponents. Chapter 3 presents thelanguage Mona
o in more detail.End-user programming is typi
ally performed at the topmost or higher
ontrol layers. End users are presented a so-
alled "end-user window" whi
hprovides a limited view of the 
ontrol program. Typi
ally, an end user isonly allowed to add some fun
tionality, reorder routine 
alls, add 
onditionalstatements, or 
hange some parameter settings.On the other side, there are 
onstraints and dependen
ies on the opera-tions of the 
omponents, whi
h must be enfor
ed in any program. Althoughoften quite obvious (see Se
tion 8), it is hard or even impossible for endusers to follow these 
onstraints while they modify a program. So far, restri
-tions and 
onstraints are 
he
ked in a separate program se
tion. However, the
he
ks are done at runtime, often resulting in emergen
y stops and expen-sive ma
hine downtimes. It is therefore highly desirable to have a means of
he
king and enfor
ing those 
onstraints and restri
tions already at 
ompiletime.1.2 Outline of our Approa
hOur approa
h is based on the spe
i�
ation of dynami
 
ontra
ts for 
om-ponents, automata simulation, a knowledge dedu
tion pro
ess whi
h derivesknowledge about program properties at 
ode positions, and assistan
e te
h-niques whi
h exploit this knowledge. The assistan
e tools give immediatefeedba
k on 
ontra
t and 
onstraint violations, generate proposals of validprogram 
hanges and present those to the end-user programmer. Addition-ally, the ma
hine state for a 
ertain lo
ation in the 
ode 
an be visualizedat editing time, su
h that the end-user programmer 
an get a better under-standing of a program.Figure 1.1 depi
ts an overview of our approa
h. First, the valid behav-ior of the 
omponents is des
ribed in proto
ol 
ontra
ts and 
onstraints (2),



4 CHAPTER 1. INTRODUCTION
Contra
tsConstraints
Mona
oCode (1)Impl. Automaton

(2)Proto
ol Automata
(3)State Mapping (4)

AnnotatedImpl. Automaton
(5) ProposalRepair(6) Visualization(7)

Figure 1.1: Proto
ol 
ontra
ts and the state mapping algorithm are thebasis for a variety of end-user guidan
e appli
ations.whi
h are translated into proto
ol automata. Se
ond, the behavior of the
omponent implementation is translated into implementation automata (1)
ontaining 
ontrol �ow information as well as Boolean 
onditions a�e
tingthe 
ontrol �ow. Next, a state mapping algorithm (3) establishes a weaksimulation relation [Bie08℄ between the implementation automaton and theproto
ol automata of the sub
omponents. It asso
iates state knowledge withstates of the automaton and updates this knowledge while 
he
king the imple-mentation for 
ontra
t violations. The resulting annotated implementationautomaton (4) is then used in di�erent end-user support systems as follows:� The IDE provides immediate feedba
k about 
ontra
t and 
onstraintviolations at the 
ode position in the editor.� Valid routine 
alls (5) to sub
omponents are proposed based on the
ontra
ts of the sub
omponents while observing 
onstraints.� Semanti
 program repair (6) gives proposals on how a program violating
ontra
ts or 
onstraints 
an be 
hanged su
h that the resulting program
omplies with 
ontra
ts and 
onstraints.� Program state visualization (7) uses knowledge generated from thestate mapping algorithm to visualize the state of 
omponents at a 
er-tain lo
ation in the 
ode.



1.3. PROJECT HISTORY 51.3 Proje
t HistoryThis work is part of the proje
t Mona
o of the Christian Doppler Lab-oratory for Automated Software Engineering1 at the Institute for SystemSoftware2 at the Johannes Kepler University, Linz, Austria3. The laboratorywas founded in February 2006, in 
ooperation with Keba AG, Austria4 andis funded by the Christian Doppler Fors
hungsgesells
haft, Austria5.The proje
t started in 2006 with the de�nition of a �rst version ofthe domain-spe
i�
 language Mona
o, a 
ompiler, and a runtime envi-ronment [Hur06℄, [PHM06℄. In July 2006 a se
ond version of the runtimeenvironment and a visual programming environment [PHWM07℄ has been
reated.In De
ember 2006, �rst ideas aboutMona
o 
ode veri�
ation and using
ontra
ts to guide end users emerged. We also worked on 
ompilers and run-time environments in C, the integration into the existing runtime of Keba,and on an end-user friendly UI 
on�guration tool based on variability mod-els [PHS+08a℄, [HW08℄. We started �rst experiments with 
ontra
ts and thedes
ription of the behavior of Mona
o 
omponents. In late 2007, prototypesof the 
ode veri�
ation algorithm existed (yet without pre- and post
ondi-tions), in 2008, the missing pre- and post
onditions as well as the programrepair fun
tionality were implemented [PHS+08
℄. In 2009 program visual-ization support was added [Str09℄.1.4 Stru
ture of the ThesisThis thesis is organized as follows: Chapter 2 reviews te
hniques and toolswhi
h serve as ba
kground and motivation for our resear
h. Chapter 3presents the domain-spe
i�
 language Mona
o. Subsequent Chapters 4�6 explain the algorithms and data stru
tures used to abstra
t fromMona
o
ode, verify it, and generate knowledge. Chapter 7 presents Semanti
 As-sistan
e tools based on the results of the veri�
ation pro
ess. The tools are1http://ase.jku.at2http://ssw.jku.at3http://www.jku.at4http://www.keba.at5http://www.
dg.a
.at

http://ase.jku.at
http://ssw.jku.at
http://www.jku.at
http://www.keba.at
http://www.cdg.ac.at


6 CHAPTER 1. INTRODUCTIONused to guide end users. In 
ase of 
ontra
t violations they help �nding validprogram repair strategies. A state dedu
tion pro
ess is used for a design-timeprogram visualization tool. Case studies in Chapter 8 demonstrate the appli-
ability of the presented approa
h to realisti
 problems. Chapter 9 dis
ussesrelated proje
ts on veri�
ation of 
omponent-based systems, des
ription of
omponent behavior, program repair, and program visualization. Finally,Chapter 10 
on
ludes the thesis with a summary of the most signi�
antparts and a summary of the 
ontributions.



Chapter 2State of the Art
”Beware of bugs in the above code;

I have only proved it correct,

not tried it.”- Donald KnuthThis 
hapter provides a brief overview over the state of the art of the top-i
s whi
h form the ba
kground of this work. Se
tion 2.1 introdu
es 
ode 
om-pletion systems 
urrently available for popular development environments.Se
tion 2.2 reviews formal methods, model 
he
king, and propositional sat-is�ability. The last se
tion introdu
es the topi
 of belief revision and beliefupdate.2.1 Code CompletionSour
e 
ode text editors in modern integrated development environments(IDEs) give programmers versatile support in performing their tasks. Besidessyntax highlighting, IDEs also provide users with suggestions and informa-tion related to the 
urrent 
ontext. This information is either displayed asan overview over the 
urrent 
ontext (e.g., the Outline view in the E
lipseIDE) or as syntax-dire
ted 
ode 
ompletion proposals that pop up while theprogrammer types 
ode.While these popup menus are named di�erently in their respe
tive IDEs7



8 CHAPTER 2. STATE OF THE ART(e.g., Content Assist in E
lipse, IntelliSense in Mi
rosoft Visual Studio) theyall have similar fun
tionality: Proposing valid 
ode (e.g., 
lass members) usingmeta data (syntax tree), re�e
tion or heuristi
s based on the 
urrent 
ontext.Mi
rosoft IntelliSenseMi
rosoft®IntelliSense is the 
ode 
ompletion fa
ility of Mi
rosoft VisualStudio®. It uses .NET re�e
tion and the introspe
tion fa
ilities of COM toestablish a database of symbols and s
opes, whi
h is 
onsulted when the userenters 
ode in the editor. Synta
ti
ally suitable symbols (
lass names, methodnames, �eld names, variable names, et
.) are then presented in a drop-downbox and help to �nd elements available in the s
ope of the 
ontext.E
lipse Content AssistSimilar to Mi
rosoft's 
ode 
ompletion implementation, the E
lipse JDT(Java Development Tools) provide a fa
ility 
alled Content Assist [AL04℄.Content Assist takes the guesswork out of 
oding by helping the program-mer to� �nd a given type� �nd a given �eld or method of an obje
t� enter method parameter valuesAdditionally, E
lipse provides 
ontextual information about the 
urrent�le in the so-
alled Outline view.Produ
tivity ToolsFor Mi
rosoft Visual Studio there exist many third-party add-ins whi
h en-han
e the 
apabilities of the built-in IntelliSense by providing a ri
her set ofheuristi
s to �nd the elements that may be needed in a spe
i�
 
ontext. Asan example, JetBrains ReSharper (http://www.jetbrains.
om/resharper) pro-vides advan
ed 
ode 
ompletion whi
h proposes symbols that, for example,meet the expe
ted type of an assignment.

http://www.jetbrains.com/resharper


2.2. FORMAL METHODS 9Short
omingsAll the produ
tivity tools mentioned above provide 
ode 
ompletion and
ode proposals based on the lo
al, synta
ti
 
ontext of the editing positionin the 
ode. This 
ontext is sear
hed for information about the stati
 programstru
ture 
onsisting of variables and member de
larations.While this lo
ality makes the approa
hes appli
able to a wide variety ofs
enarios, they fail to take into a

ount state information (semanti
 informa-tion) and information about 
omponent behavior. For example, after typinga variable name and a dot the tools infer the type of the variable and suggestall methods that 
an be applied to this variable. However, they fail takinginto a

ount whether a suggested method 
all would be semanti
ally 
orre
tat the 
urrent position, i.e., whether the 
all would be legal in the sequen
eof method 
alls that is de�ned by the 
ontra
t of the variable's type.2.2 Formal MethodsThe term formal methods des
ribes te
hniques for the spe
i�
ation, synthesisand veri�
ation of hardware and software systems. Figure 2.1 shows a bigpi
ture of formal methods:Formal Spe
i�
ation. Formal spe
i�
ation languages abstra
tly des
ribewhat an implementation should do. These des
riptions (models) 
on-tain information about the states of a system and the operationswhi
h 
ause the system to make transitions to other states. Well-known spe
i�
ation languages are abstra
t state ma
hines (ASM )[GKOT00℄, the vienna development method spe
i�
ation language(VDM-SL) [ISO96a℄, the Z notation [ASM80℄, and temporal logi
s(see Se
tion 2.2.2).Formal Synthesis. Formal synthesis is the translation of a spe
i�
ationinto a more 
on
rete implementation (see Figure 2.2). This step is alsoreferred to as re�nement or transformation. If all translation steps 
anbe proven to be 
orre
t, an a
tual implementation 
an be generatedwhi
h is 
orre
t by 
onstru
tion (i.e. it is 
orre
t with respe
t to thespe
i�
ation).



10 CHAPTER 2. STATE OF THE ARTFormal Veri�
ation. Formal veri�
ation uses mathemati
al te
hniques toensure that a system 
onforms to some pre
isely expressed notion offun
tional 
orre
tness (spe
i�
ation) [Bje05℄.Se
tion 2.2.1 will detail on model 
he
king, while Se
tion 2.2.2 introdu
esformal spe
i�
ation languages. Propositional satis�ability and tools for solv-ing satis�ability problems are presented in Se
tion 2.2.3.2.2.1 Model Che
kingModel 
he
king is an automati
 te
hnique for verifying �nite state 
on
urrentsystems [CGP99℄. It is a formal veri�
ation method whi
h veri�es a 
ertainproperty of a system by exploring all rea
hable states of the system. Theadvantages of model 
he
king over other veri�
ation approa
hes are thatit 
an be applied fully automati
ally, and if a state has been found wherethe property is violated, model 
he
king generates a 
ounterexample, i.e.,a sequen
e of transitions that leads the system into the faulty state. This
ounterexample 
an then be used to lo
ate the a
tual fault of the system.There are two spe
ial types of properties that are of interest in model
he
king:
UML SDLSyn
hronousLanguages B-MethodCompilerFormalSynthesis

VDMASM ZFormal Spe
i�
ation
ModelChe
kingTheoremProvingEquivalen
eChe
kingSAT FormalVeri�
ationFigure 2.1: Overview over formal methods [Bie08℄.
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i�
ationImplementation SynthesisVeri�
ation
Figure 2.2: Veri�
ation and Synthesis.Safety. Safety properties assert that nothing bad happens. For example: "Aslong as the servi
e door is open, the ma
hine must not start".Liveness. Liveness properties assert that some progress eventually happens.For example: "The tra�
 light eventually turns green".Model 
he
king tools use these properties en
oded in some spe
i�
ationlanguage (see Se
tion 2.2.2) to verify the system. Sin
e model 
he
king toolstraverse all rea
hable states of a system, these states need to be representedin memory. The main problem of model 
he
king is, that large systems often
onsist of mu
h more states than 
an be represented in memory. This mainproblem is therefore 
alled the state explosion problem. Many approa
hesexist to over
ome this problem:Symboli
 Model Che
king [M
M92℄. Symboli
 model 
he
king avoidsbuilding a 
omplete state graph by using formulas to represent sets ofstates.Partial Order Redu
tion [CGP99℄. Partial order redu
tion redu
es thesize of the state graph by partially expanding lo
al states in a syn-
hronous 
omposition of 
omponents.Compositional Model Che
king [BCC98℄. Compositional or modularmodel 
he
king partitions a system into a set of 
omponents 
ommuni-
ating over simple interfa
es. Instead of 
he
king the parallel 
omposi-tion of all 
omponents, ea
h 
omponent is 
he
ked separately, assuming
ertain behavior of the other 
omponents. The validity of these assump-tions is later veri�ed when the respe
tive 
omponent is 
he
ked.



12 CHAPTER 2. STATE OF THE ARTPredi
ate Abstra
tion [Das03℄. Instead of 
he
king a large system, anabstra
t model of the system is 
reated. This abstra
t model does notre�e
t all properties of the original system, while it still 
ontains enoughinformation to verify the desired 
orre
tness properties.While all of these te
hniques aim at making model 
he
king feasible, veryfew tools provide feedba
k about the 
he
king pro
ess other than providing a
ounterexample tra
e or reusing the 
ounterexample to further detail the ab-stra
tion (
ounterexample guided abstra
tion re�nement, CEGAR [CL00℄).ToolsModel 
he
king tools (model 
he
kers) exist for various appli
ation areas andvarious programming languages. The following list shows three prominentmodel 
he
kers, all based on di�erent languages.SPIN. SPIN (Simple Promela Interpreter) [Hol03℄ is a model 
he
ker de-veloped by Gerard J. Holzmann and 
an be used to 
he
k veri�
ationmodels spe
i�ed in Promela, a veri�
ation modeling language aimed atmodeling the behavior of 
on
urrently exe
uting pro
esses1.BLAST. BLAST [BHJM07℄, [HJMS03℄ is a model 
he
king tool for C pro-grams and allows 
he
king safety properties on an automati
ally gen-erated abstra
t model of the program2.Java Path�nder. Java Path�nder [VH00℄, formerly based on the SPINmodel 
he
ker, is now an independent model 
he
king tool based onits own Java Virtual Ma
hine. It 
an be used to sear
h for deadlo
ks,un
aught ex
eptions (for example, due to failed assertions), or even
ustom properties that 
an be spe
i�ed in a Java 
lass3.2.2.2 Formal Spe
i�
ationsThis se
tion introdu
es formal spe
i�
ation languages whi
h are 
ommonlyused to express safety and liveness properties. These properties are then1http://www.spinroot.
om2http://mt
.ep�.
h/software-tools/blast3http://javapath�nder.sour
eforge.net

http://www.spinroot.com
http://mtc.epfl.ch/software-tools/blast
http://javapathfinder.sourceforge.net
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Figure 2.3: CTL* and its subsets CTL and LTL.veri�ed using a model 
he
ker.Temporal Logi
sTemporal logi
s represent propositions spe
ifying properties of state transi-tion systems. These properties are des
ribed in terms of sequen
es of transi-tions in the transition system using so-
alled temporal operators expressingproperties like �nally or never.Computation Tree Logi
* (CTL* ) is a superset of two widely used tem-poral logi
s: bran
hing-time logi
 (CTL) and linear-time logi
 (LTL). We�rst des
ribe the general properties of CTL* and then detail on the twosubset languages. The relation between CTL*, CTL, and LTL is outlined inFigure 2.3.CTL* [CGP99℄ formulas 
onsist of atomi
 proposition symbols and theusual logi
 operators ¬, ∧, ∨. These basi
 formulas are 
alled state formulasand 
an be used in 
ombination with the following temporal operators todes
ribe properties of (in�nite) paths in the 
omputation tree.� X. The subsequent formula holds at the following state (next).� F. The subsequent formula holds at some state on the path in the
omputation tree (�nally).� G. The subsequent formula holds at all states on the path in the 
om-putation tree (globally).



14 CHAPTER 2. STATE OF THE ART� U binary operator: p1Up2 means that there must exist a state at whi
h
p2 holds and p1 must hold (until) on all states between the 
urrent stateand that state.� R binary operator: p1 R p2 means that p1 holds up to the state where
p2 holds (su
h a state does not need to exist) (release).In addition, path quanti�ers 
an be used to spe
ify the s
ope of the(sub)formula. These quanti�ers are A (all) and E (exists), meaning "for all
omputation paths" and "for some 
omputation paths". Formulas are eval-uated on a transition system starting at a spe
i�ed state (usually the initialstate) [CGP99℄.Interfa
e AutomataInterfa
e automata [dAH01, dAH05℄ are a regular language to des
ribe theorder in whi
h methods of a 
omponent 
an be 
alled. Interfa
e automatatherefore des
ribe in whi
h order a 
omponent assumes that its methodsare 
alled and in whi
h order methods of external 
omponents are 
alled.Compatibility of two interfa
e automata 
an be 
omputed by �nding an en-vironment in whi
h no error state is rea
hable (optimisti
 approa
h). Theenvironment is de�ned as a sequen
e of external signals, e.g., a 
ommuni
a-tion 
hannel whi
h may fail to transmit a message, whose behavior 
an notbe guaranteed by some 
ontra
t. A pessimisti
 approa
h would regard twointerfa
e automata in
ompatible as soon as a single environment was foundin whi
h an error state is rea
hable.Contra
tsContra
ts introdu
ed by Bertrand Meyer [Mey86℄ des
ribe the mutual as-sumptions and guarantees between two 
omponents. Assumptions are ex-pressed as pre
onditions, guarantees as post
onditions. In addition, a 
on-tra
t also des
ribes invariants that must hold at all times. Bertrand Meyer'sidea is to in
orporate these elements in the design pro
ess by stating the
ontra
t before 
oding the implementation (design by 
ontra
t).Design by 
ontra
t is natively supported by some programming languages,like Ei�el [Mey92℄, D [Bri09℄, or Spe
♯ [BLR+04℄. For other, more 
ommon



2.3. BELIEF REVISION AND BELIEF UPDATE 15languages, libraries and third-party tools exist, whi
h mimi
 the fun
tionalityof pre
onditions and post
onditions.
2.2.3 Satis�abilitySatis�ability (SAT ) of Boolean properties is the de
ision problem of �ndingvariable assignments that make a Boolean property true. If su
h an assign-ment 
an be found for all variables, the property is said to be satis�able,otherwise it is unsatis�able. If a formula is unsatis�able, it is 
alled a 
on-tradi
tion, sin
e no assignment of truth values to its variables 
an make thewhole formula be
ome true.Current SAT solvers (tools for solving satis�ability problems) are mostlySMT solvers (satis�ability modulo theories) supplying spe
ial theories likethe theory of integers, real numbers, arrays, or bit ve
tors. Some of the well-known solvers are Boole
tor [BBL08℄, MathSAT [BCF+08℄, Yi
es [DdM06℄,or Z3 [dMB08℄.Most SAT solvers are based on variations of the DPLL algorithm (Davis-Putnam-Logemann-Loveland) [DP60℄ assigning truth values to unassignedvariables, propagating impli
ations on other variables, and then either assigntruth values to other variables or ba
ktra
k in 
ase of 
on�i
ts. Additionally,heuristi
s 
an be applied to 
hoose those variables as assignment 
andidateswhi
h lead to a satisfying assignment most qui
kly.
2.3 Belief Revision and Belief UpdateThe terms belief revision and belief update 
an be found in dis
iplines likephilosophy, arti�
ial intelligen
e, or databases. In a nutshell, belief revisionand belief update are two strategies for adding 
on�i
ting information to aknowledge base. Depending on the reason for the belief 
hange, the one orthe other belief 
hange strategy is the better 
hoi
e. This se
tion will only
onsider the AI view on belief 
hange.



16 CHAPTER 2. STATE OF THE ART2.3.1 De�nitionsThe following de�nitions give basi
 understanding about knowledge basesand belief 
hange operators.De�nition 2.1 A knowledge base (belief base) is a �nite set of formulas
onsisting of a �nite set of atoms (ATM = p, q, r, ...) and the usual logi
 op-erators ¬, ∧, ∨, as well as the symbols ⊤ and ⊥ for true and false. Knowledgebases are equal to the 
onjun
tion of their elements.De�nition 2.2 A knowledge base K is 
onsistent if it is satis�able.De�nition 2.3 A belief 
hange is an operation ∗ mapping a 
urrent know-ledge base K and new information N , a set of formulas, to a new knowledgebase K ∗N .A belief 
hange adds new information to an existing knowledge base whilekeeping the knowledge base 
onsistent. If new information added to the know-ledge base would make the resulting knowledge base in
onsistent, some of theold information needs to be removed from the knowledge base. Belief revisionand belief update are two strategies di�ering in how 
ontradi
ting knowledgeis treated.2.3.2 Belief RevisionBelief revision (◦) is the type of modi�
ation used when the 
hange of theknowledge base is due to new information about a stati
 world. The 
hangeof the knowledge base is therefore due to updated information on an un-
hanged state of the world. Al
hourrón, Gärdenfors, and Makinson [AGM85℄proposed 8 postulates (known as the AGM postulates) that every adequaterevision operator should satisfy. These 8 postulates have been reformulatedby Katsuno and Mendelzon to the following 6 revision postulates:(R1) (K ◦N)⇒ N . The result of the revision 
ontains the new information.New information has higher priority than old information.



2.3. BELIEF REVISION AND BELIEF UPDATE 17(R2) If K ∧N is 
onsistent, then K ◦N = K ∧N . If possible, the revisionuses 
onjun
tion to add new information.(R3) If N is satis�able then K ◦N is satis�able. Therefore, revision alwaysestablishes a 
onsistent knowledge base, even if the original knowledgebase was in
onsistent, unless N is in
onsistent by itself.(R4) If (K1 ⇔ K2) ∧ (N1 ⇔ N2) then (K1 ◦N1)⇔ (K2 ◦N2). The revisionoperator should be invariant to the synta
ti
 form of the new infor-mation, thus logi
ally equivalent information results in the same newknowledge base.(R5) (K ◦N1)∧N2 ⇒ K ◦ (N1 ∧N2). A revision by N1 ∧N2 is weaker thanjust adding N2 to the knowledge base updated by N1.(R6) If (K ◦N1) ∧N2 is satis�able then K ◦ (N1 ∧N2)⇒ (K ◦N1) ∧N2.(R5) and (R6) des
ribe the rule, that the revision operator should beapplied with minimal 
hange [KM89℄.2.3.3 Belief UpdateBelief update (⋄) is the type of modi�
ation used when the 
hange of theknowledge base is due to new information based on 
hanges in an evolvingworld. The 
hange of the knowledge base is therefore due to updated informa-tion on a world that has 
hanged sin
e the knowledge base was established.Similar to the AGM postulates, Katsuno and Mendelzon de�ned 8 postulatesfor update operators (KM postulates) [KM91℄.(U1) (K ⋄N)⇒ N . The result of the update 
ontains the new information.New information has higher priority than old information (as R1).(U2) If K ⇒ N then (K ⋄ N) ⇔ K. Nothing needs to be 
hanged, if thenew information is already present in the knowledge base.(U3) If N is satis�able and K is satis�able then K ⋄ N is also satis�able.Therefore, update only has to establish a 
onsistent knowledge base, ifthe original knowledge base and the new information were 
onsistent.



18 CHAPTER 2. STATE OF THE ART(U4) If K1 ⇔ K2 ∧ N1 ⇔ N2 then K1 ⋄ N1 ⇔ K2 ⋄ N2. The update oper-ator should be invariant to the synta
ti
 form of the new information,thus logi
ally equivalent information results in the same new knowledgebase.(U5) (K ⋄N1)∧N2 ⇒ K ⋄ (N1∧N2). An update by N1∧N2 is weaker thanjust adding N2 to the updated by N1.(U6) If K ⋄N1 ⇒ N2 and K ⋄N2 ⇒ N1 then K ⋄N1 ⇔ K ⋄N2. If N1 and
N2 are equivalent under K, then they result in the same update.(U7) If K is 
omplete then ((K ⋄ N1) ∧ (K ⋄ N2)) ⇒ K ⋄ (N1 ∨ N2). Aknowledge base is 
omplete, if it has a truth value for every symbol. Thispostulate is almost meaningless sin
e knowledge bases are in generalin
omplete [HR99℄.(U8) (K1 ∨ K2) ⋄ N ⇔ (K1 ⋄ N) ∨ (K2 ⋄ N). Updating the two alterna-tive knowledge bases is equivalent to updating their disjun
tion. Thispostulate des
ribes the idea of modelwise updating.Di�erent proposals for 
on
rete update operations have been made. Mostof the proposed operators do not ful�ll all of the postulates [HR99℄. Onlyfew operators satisfy all 8 KM postulates. Therefore these postulates aredis
ussed 
ontroversially and Herzig and Ri� [HR99℄ have another set ofpostulates dedu
ted from the 8 KM postulates in
luding integrity 
on-straints [Win90, HR99℄ (formulas that must be guaranteed to hold afterevery update).2.3.4 Winslett's Standard Semanti
sWinslett's standard semanti
s [Win90℄ de�nes an update operator ful�llingonly some of the KM postulates for update operators: (U1), (U3), (U7), and(U8). Postulate (U2) is not satis�ed, be
ause the knowledge base may bealtered, even if K ⇒ N . We denote the update operator de�ned by Winslettas ⋄WSS . In a nutshell, the operator repla
es existing information on a symbolwith new information about the symbol, and adds information about symbolsnot stated so far. Consider p ⋄WSS (p ∨ q) = p ∨ q. This operation obviouslydoes not satisfy (U2), sin
e p ⇒ (p ∨ q) but (p ∨ q) ⇒ p does not hold.



2.3. BELIEF REVISION AND BELIEF UPDATE 19Similarly, a 
ounterexample for (U4) 
an be found: 
onsider a knowledgebase p and updates q∧ (p∨¬p) and q. The update results in q∧ (p∨¬p) and
p ∧ q. Obviously, the results are not equal. This short
oming 
an be easilyover
ome by eliminating redundant atoms.
2.3.5 ExampleThe following example is taken from [KM91℄.Consider a room with two obje
ts in it, a book and a magazine. Suppose
b means the book is on the �oor, and m means the magazine is on the �oor.Then, K = {b ∨̇ m} states that the book or the magazine is on the �oor,but not both (∨̇ stands for xor). Now we order a robot to put the book onthe �oor. The result of this a
tion should be represented by the update of Kwith N = {b}.If we apply revision, the result ofK◦N isK∧N , that is (b∨̇m)∧b = b∧¬m.But why should we 
on
lude that the magazine is not on the �oor? If weapply update, the result of K ⋄N is b, that is we do not know anything aboutm any more, whi
h is exa
tly what we would expe
t. The di�eren
e of thetwo operators is therefore, that revision assumes that the new information isadditional knowledge about an un
hanged world, while update assumes thatthe new information is due to a 
hange of the real world.
2.3.6 The Frame ProblemThe frame problem deals with the un
ertainty involved in 
hanging parts ofa world without expli
itly stating whi
h parts of the world do not 
hange.There are di�erent solutions to the problem from whi
h we will only des
ribethe one used in our implementation of the belief update.The default logi
 solution solves the frame problem by assuming that aproperty not stated in the 
hange a
tion did not 
hange. Thus, exa
tly thestated properties 
hange and all other properties (not 
on�i
ting with the
hanged properties) remain un
hanged.



20 CHAPTER 2. STATE OF THE ART2.3.7 Open vs. Closed World AssumptionSimilar to the assumption about unstated 
hanges to properties, we also needassumptions about how to handle properties that are not known to be trueor false. Assume that we have a knowledge base 
onsisting of the information
a∧ b. If we want to dedu
e b∧ c from this knowledge base, we need to de
idewhether to return true, false or unknown.Closed World AssumptionThe 
losed world assumption presumes a 
omplete knowledge base that 
on-tains every pie
e of valid knowledge. Therefore, every statement that 
annotbe dedu
ted from this knowledge base must be false.Open World AssumptionIn 
ontrast to the 
losed world assumption, the open world assumption as-sumes an in
omplete knowledge base from whi
h a non-inferable statementmight either be due to the statement being false, or due to a missing state-ment. Thus, every statement that 
an not be dedu
ted is said to be unknown(either false or missing).



Chapter 3Mona
o
”The most important decision

in language design concerns

what is to be left out.”- Niklaus WirthThe 
ontext of this thesis is the domain-spe
i�
 language Mona
o,a language for programming automation ma
hines. First, the design goalsof Mona
o are outlined (Se
tion 3.1). Se
tion 3.2 and 3.3 introdu
e thelanguage 
onstru
ts, while Se
tion 3.4 presents the runtime semanti
s ofMona
o. Se
tion 3.5 
on
ludes with an example appli
ation. More detailsof Mona
o are given in [PHS+08b℄.Mona
o (MOdeling Notation for Automation COntrol) is a domain-spe
i�
 language (DSL) for programming event-based, rea
tive automationsolutions. The main purpose of the language is to bring automation pro-gramming 
loser to domain experts and end users. Important design goalstherefore have been to keep the language simple and to allow writing pro-grams whi
h are 
lose to the per
eption of domain experts. The languageMona
o is similar to StateCharts [Har87℄ in its expressive power, however,adopts an imperative notation. Moreover, Mona
o adopts a state-of-the-art
omponent approa
h with interfa
es and polymorphi
 implementations andenfor
es stri
t hierar
hi
al 
omponent ar
hite
tures to support the hierar
hi-
al abstra
tion of 
ontrol tasks. After dis
ussing design goals, the languageelements of Mona
o are presented. 21



22 CHAPTER 3. MONACO3.1 Design GoalsThe language Mona
o is designed with the goal that not only softwareengineers but also domain experts and, in a limited way, end users are 
a-pable of reading, writing, understanding, and adapting 
ontrol programs.Mona
o is spe
ialized to a rather narrow sub-area of the automation do-main, i.e., programming 
ontrol sequen
e operations for manufa
turing ma-
hines. The lower level 
ontinuous 
ontrol layers and higher manufa
turingexe
ution system (MES) layers are therefore out of s
ope. It is intended to
over the event-based, rea
tive 
ontrol part of ma
hine automation softwareonly. Therefore, a 
ontinuous 
ontrol system, typi
ally realized in languagesof the IEC 61131-3 [IEC03℄ standard or plain C, will form a lower layer whi
hwill be 
ontrolled, s
heduled, and 
oordinated by the higher rea
tive layerimplemented in Mona
o.The language Mona
o has been designed based on a domain analysiswhi
h showed how domain experts and end users per
eive automation solu-tions:� A domain expert per
eives a ma
hine as being assembled from a set ofindependent 
omponents working together in a 
oordinated fashion.� Ea
h 
omponent normally undergoes a determined sequen
e of 
ontroloperations. There are usually very few sequen
es whi
h are 
onsideredto be the normal mode of operation, and those are usually quite simple.Complexity is introdu
ed by the fa
t that those normal 
ontrol 
y
les
an be interrupted anytime by the o

urren
e of abnormal events, er-rors, and malfun
tions.� The 
ontrol sequen
es of the various ma
hine 
omponents are 
oordi-nated at a higher level.Additionally, we have identi�ed the following requirements for a DSL andtools in the target domain:� The language should be simple. It should 
ontain a minimal set of lan-guage 
onstru
ts and those should be intuitive and easy to understand.



3.1. DESIGN GOALS 23� Domain experts and also end users usually have some programmingexperien
e in languages like Pas
al or Basi
. A syntax that is similarto one of those languages is therefore preferred.� Reliability is more important than �exibility and expressiveness. Pro-grams written by domain experts and end users are usually quite sim-ple. Furthermore, end users 
hange and adapt existing programs in arather restri
ted way. However, the e�e
t of programming mistakes 
anbe severe.� Rea
tive behavior is intrinsi
ally 
omplex. Espe
ially, realizing asyn-
hronous event and ex
eption handling in a 
on
ise way represents a
hallenge.� Programs must be runtime e�
ient and must usually satisfy real-time
onstraints.The design of Mona
o is based on the following ideas:� Although the behavioral model of the language is very 
lose to State-Charts, an imperative style of programming is used. The languageadopts proven 
on
epts from imperative languages su
h as pro
eduralabstra
tion, syn
hronous pro
edure 
alls, parameters, blo
k stru
ture,lexi
al s
oping, and a Pas
al-like syntax.� The main fo
us of the language is on event handling. Statements havebeen introdu
ed to express rea
tion to asyn
hronous events, parallelismand syn
hronization, ex
eption handling and timeouts in a 
on
ise way.However, asyn
hronous event handling is 
learly separated from normaloperation sequen
es to avoid mingling the normal 
ode with ex
eptionhandling 
ode.� Mona
o pursues a 
omponent-based approa
h with stri
t modulariza-tion whi
h allows a dire
t mapping of the ma
hine stru
ture to thesoftware stru
ture.� In 
ontrast to many other 
omponent-based approa
hes in this domain,Mona
o pursues stri
t hierar
hi
al 
ontrol ar
hite
tures of subordi-nate and superordinate 
omponents. A 
omponent relies only on the
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ompo-nents. It 
omposes and 
oordinates the behavior of its subordinatesand provides abstra
t and simpli�ed views to its superordinate 
ompo-nent. Thus, 
omplex 
omponents 
an be built by 
omposing existing
omponents instead of dire
tly 
ontrolling signals of a ma
hine.� The assembly of Mona
o 
omponents toMona
o programs is done ina separate 
on�guration phase (setup) prior to exe
ution. That meansthe entire system is stati
ally 
on�gured, i.e., all 
omponents, 
ompo-nent parameters and the 
omponent hierar
hy are �xed and 
an not
hange while the program is running. This stati
 nature of Mona
oprograms is an important property whi
h makes, for example, 
odeoptimization or stati
 program analysis feasible.In the following, the main language elements are presented.
3.2 Component Approa
h3.2.1 Interfa
e De
larationsInterfa
e de
larations (Figure 3.1) are used for de�ning the stati
 
ontra
t be-tween 
omponents and their 
lients and hen
e have a similar purpose as inter-fa
es in modern obje
t-oriented languages. However, interfa
es in Mona
oa

ount for the hierar
hi
al 
ommuni
ation ar
hite
ture of 
ontrol programs.On the one hand, an interfa
e de�nes the externally visible operations of a
omponent in the form of routine de
larations. Those represent the opera-tions a superordinate will be able to 
all. On the other hand, an interfa
ede�nes how a 
omponent will provide feedba
k about the ful�llment of its
ontrol tasks. This is done by spe
ifying events it will signal and fun
tions itprovides for a

essing runtime state (properties) of the 
omponent. In otherwords, the routines de�ne tasks a 
omponent 
an perform and the events andfun
tions de�ne feedba
k the 
omponent will provide.
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(a) Mona
o (b) UMLFigure 3.1: Interfa
e de
laration in Mona
o (left) and UML (right).

(a) Mona
o (b) UMLFigure 3.2: Component de
laration in Mona
o (left) and UML (right).3.2.2 Component ImplementationsInterfa
es are implemented by 
omponents (Figure 3.2), i.e., 
omponents haveto implement the routines, fun
tions, and events de�ned in the interfa
es. A
omponent has parameters and internal state variables. A parameter is aruntime 
onstant used to 
on�gure a 
omponent instan
e at setup time. Avariable, however, is used to hold runtime state properties of a 
omponent.
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omponents to ful�ll their 
ontrol tasks.A 
omponent therefore de
lares sub
omponent variables whi
h 
an hold ref-eren
es to sub
omponent instan
es. Interfa
e types are used in the sub
om-ponent variable de
larations. The sub
omponent de
laration represents therequired interfa
es of the 
omponent (Figure 3.2). Sub
omponents are poly-morphi
, i.e. any 
omponent implementing (providing) the required interfa
e
an be used. The a
tual sub
omponent instan
e is plugged into the sub
om-ponent slot at setup time (see below).There are no a

ess modi�ers in Mona
o. Only elements de�ned in theimplemented interfa
es of the 
omponent are externally visible.Components implement fun
tions, events and routines. A fun
tion imple-mentation in a 
omponent is similar to fun
tions in pro
edural programminglanguages, e.g., Pas
al. They return runtime state properties of 
omponents.In Mona
o, fun
tions have no side e�e
ts, i.e., they are not allowed to setglobal variables, 
all routines, raise events, or to re
urse. Usually fun
tionsare used to 
ompute important state properties and forward those in a moreabstra
t, 
on
entrated form to the superior 
omponent.Routines are used to implement 
ontrol algorithms and therefore 
on-stitute the 
entral programming elements of 
omponents. Routines will bedis
ussed in detail in Se
tion 3.3.
3.2.3 Stati
 Con�gurationIn order to 
reate a 
ompleteMona
o program,Mona
o 
omponents haveto be instantiated and the 
omponent/sub
omponent relation needs to be es-tablished (Figure 3.3). Furthermore, 
omponent parameters have to be setif the desired values di�er from the de�ned default values. This stati
 
on-�guration of the system is established in a setup phase prior to programexe
ution. The 
on�guration 
annot be 
hanged during the exe
ution of theMona
o program.
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(a) Mona
o (b) UMLFigure 3.3: Sub
omponent relation in Mona
o (left) and UML (right).
3.3 Rea
tive System Programming3.3.1 Control RoutinesRoutines are used to implement 
ontrol algorithms of 
omponents. Routinesare de�ned similar to pro
edures in imperative languages. They 
an have pa-rameters, lo
al variables and a body with a statement sequen
e. Well-knownlanguage 
onstru
ts from stru
tured programming languages like blo
k stru
-ture, lexi
al s
oping, loops, if statements et
. are used. Additionally, spe
ialprogramming 
onstru
ts for parallel tasks and event handling with seman-ti
s similar to StateCharts are provided. Neither dire
t re
ursion, nor mutualre
ursion of routines is allowed.Routines 
an be de
lared ATOMIC whi
h means that their exe
ution 
an-not be interrupted by event handlers and that they are exe
uted atomi
allywhen used in a parallel bran
h. In fa
t, these routines may not make useof any rea
tive statements (su
h as 
onditional waits, parallel exe
ution, orevent handlers), but may, for example, only set a variable or 
all anotheratomi
 routine. Non-atomi
 routines may use the rea
tive statements as pre-sented in Se
tions 3.3.3-3.3.6.
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(a) Mona
o (b) StateChartsFigure 3.4: WAIT statement in Mona
o (a) and StateCharts (b).3.3.2 Imperative StatementsMona
o 
omes with imperative statements like IF and WHILE used withinroutines to a�e
t the 
ontrol �ow. Their semanti
s is in a

ordan
e with
ommon programming languages.The IF statement is used to 
onditionally exe
ute a 
ode blo
k. The
ondition 
an be any Boolean expression. If the 
ondition is not true, the

ELSE bran
h of the IF statement is exe
uted.Similarly the WHILE statement 
an be used to de
lare a 
onditional repe-tition of a 
ode blo
k. The head of the WHILE statement 
ontains a 
ondition.As long as this 
ondition is true, the blo
k of the statement is exe
uted.
3.3.3 Conditional WAITThe WAIT statement suspends the exe
ution of the 
urrent exe
ution threaduntil a spe
i�ed 
ondition is satis�ed. Any Boolean expression as well asevents 
an be used as a 
ondition. Thus, x>0, evtClosed.FIRED, and
TIMEOUT(1000) are all valid 
onditions. The latter expression returns true,as soon as the spe
i�ed time in millise
onds has passed sin
e the statementwas rea
hed.Compared to StateCharts, a WAIT 
orresponds to a state node with the
ondition as the triggering event (Figure 3.4).



3.3. REACTIVE SYSTEM PROGRAMMING 29

(a) Mona
o (b) StateChartsFigure 3.5: ON handler in Mona
o (a) and StateCharts (b).3.3.4 Asyn
hronous Event Handling
ON handlers are used to handle events whi
h 
an o

ur asyn
hronously to nor-mal, sequential program exe
ution. They are similar to ex
eptions in general-purpose programming languages. ON handlers spe
ify a 
ondition (see valid
onditions in a WAIT statement above) and are atta
hed to BEGIN/ENDblo
ks (Figure 3.5). Their meaning is that, whenever the 
ondition of the
ON handler be
omes true while program exe
ution is within the BEGIN/ENDblo
k or within a routine 
alled in this blo
k, the blo
k is left and the state-ment sequen
e of the ON handler is exe
uted. For ON handlers to be mean-ingful, the guarded BEGIN/END blo
k has to have blo
king statements, i.e.,
WAIT statements, where program exe
ution gets suspended and the asyn-
hronous event handling 
an o

ur.If ON handlers are nested, the dynami
ally innermost ON handler haspre
eden
e over outer ON handlers. ON handlers have interruptive behavior,therefore program exe
ution 
ontinues immediately after the handler.

ON handlers show similarities to try/
at
h 
onstru
ts in Java, however,they are mu
h more general. While in Java an ex
eption must be thrown



30 CHAPTER 3. MONACO

(a) Mona
o (b) StateChartsFigure 3.6: RESUME statement in Mona
o (a) and StateCharts (b).expli
itly and then 
an be 
aught in 
at
h 
lauses, ON handlers are triggeredby arbitrary Boolean 
onditions be
oming true.
ON handlers in Mona
o are analogous to OR states and their transi-tions in StateCharts. Figure 3.5 shows the relationship. The OR state groupsthe states, e.g., the blo
king WAIT statements, and transitions within the

BEGIN/END blo
k. The transition leaving the OR state is labeled with the
ondition of the ON handler. An ON handler 
an 
onsist of an arbitrary se-quen
e of statements.The interruptive behavior of an ON handler is the default. However, the
RESUME statement 
an be used to resume exe
ution of the blo
k after thehandler 
ode has been exe
uted. The exe
ution of the blo
k is resumed ex-a
tly where it was interrupted, even if it was interrupted within a routine
all. The RESUME statement therefore has the same semanti
s as the deephistory node in StateCharts (Figure 3.6). Currently, there is no statementequivalent to the normal history node in Mona
o.3.3.5 Parallel Exe
ution ThreadsThe PARALLEL statement is used for 
reating multiple 
on
urrent exe
utionthreads. Ea
h parallel exe
ution thread 
onsists of a statement or a statementblo
k. As soon as all parallel exe
ution threads have terminated, program ex-
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(a) Mona
o (b) StateChartsFigure 3.7: PARALLEL statement in Mona
o (a) and StateCharts (b).e
ution 
ontinues after the PARALLEL statement. The PARALLEL statementhas the semanti
s of the AND state in StateCharts, see Figure 3.7.3.3.6 Event SignalsAlthough Mona
o allows using arbitrary Boolean 
onditions as event trig-gers, event signals are provided. Those are similar to the event triggers inStateCharts or the signal 
on
ept in Esterel [BC85℄.An event is de
lared as event variable in interfa
es and 
omponents withthe EVENTS keyword (see interfa
es and 
omponents above). In routine bod-ies events 
an be �red using the FIRE statement. The event variable 
an thenbe used like any other Boolean variable in WAIT and ON handlers (Figure 3.8).In 
ontrast to normal Boolean variables, a �red event is true for one logi
altime step and reset automati
ally in the next time step. See next se
tion forexe
ution details.3.4 Exe
ution Semanti
sMona
o's exe
ution semanti
s is based on the following 
on
epts: syn-
hronous routine 
alls, 
ooperative multitasking, fair thread s
heduling, and
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(a) Mona
o (b) StateCharts
(
) Mona
o (d) StateCharts

(e) Mona
o (f) StateChartsFigure 3.8: Usage of event signals with equivalent StateChart models.event broad
ast. In the following we will dis
uss those issues in more detail.3.4.1 Syn
hronous Routine CallsRoutines are 
alled syn
hronously, i.e., the 
aller waits until the routine ter-minates. This is an important di�eren
e to many 
omponent approa
hes inthe real-time domain, e.g., UML/RT, where intera
tion between 
omponentshappens by event signals only. We have experien
ed, that syn
hronous 
allsemanti
s together with the hierar
hi
al 
ommuni
ation ar
hite
ture lead to
ontrol programs whi
h are easier to 
omprehend by domain experts and endusers (see example in Se
tion 3.5).3.4.2 Cooperative Multitasking With FairnessMona
o employs a 
ooperative multitasking s
heme with fairness. There arewell-de�ned s
heduling points in a program where threads 
an get suspendedand other threads get the 
han
e to pro
eed. S
heduling points are WAIT
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Figure 3.9: Thread state diagram (simpli�ed).statements, points before and after a PARALLEL statement, and at routinereturns. Between those points program exe
ution is treated as atomi
 and
annot be interrupted. Therefore, program exe
ution is analogous to the run-to-
ompletion semanti
s of StateCharts [Har87℄.Threads are 
reated in Mona
o by the PARALLEL statement and ONhandlers. A PARALLEL statement 
reates a thread for ea
h bran
h whi
h isready for exe
ution. The main bran
h is then suspended until all bran
hes areterminated. Similarly, an ON handler 
reates a thread whi
h is waiting for its
ondition. ON handler threads are terminated when exe
ution of the guardedblo
k has �nished, regardless of whether the handler thread was exe
uted.A �xed pre
eden
e order is used to arbitrate between 
ompeting parallelthreads. Currently, the order is determined based on order in whi
h the par-allel bran
hes appear in the sour
e 
ode. Furthermore, ON handlers alwayshave pre
eden
e over their main thread and, in 
ase of nested a
tive han-dlers, the innermost handler in terms of the dynami
 nesting is preferred.This approa
h is simple and deterministi
 and we have experien
ed that itserves our obje
tives. For more details on the exe
ution semanti
s refer toSe
tion 5.2 and [PHS+08b℄.Figure 3.9 shows state transitions of threads. Initially, ea
h thread is inthe ready state. This means it is not waiting for any 
ondition and is thereforeready to run. When the s
heduler starts a thread, it transits to the runningstate. It remains running until it rea
hes a s
heduling point; it 
hanges intothe waiting state again. The thread be
omes ready again, as soon as its
ondition (from WAIT statement or ON handler) be
omes true.When a thread rea
hes a parallel statement, it is passivated. This meansit 
an not run until it is a
tivated again. The thread is a
tivated again whenall bran
h threads are terminated.
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ooperative s
heduler uses a fair thread s
heduling algorithm basedon logi
al time steps. On
e started by a ful�lled WAIT 
ondition, a threadonly runs to the next s
heduling point. At this point another thread in theready state gets the 
han
e to run. When all threads in the ready state haverun to their next s
heduling point, the logi
al time step is over. Therefore,when a thread is running on
e in a logi
al time step, it 
an not get startedagain in the same logi
al time step. This me
hanism prevents starvation ofparallel threads. It ensures that ea
h parallel thread that is ready has a
han
e to run before another thread is started a se
ond time.3.4.3 Event Broad
astEvents are broad
ast within their dynami
 s
ope. The dynami
 s
ope ofthe event is the 
omponent in whi
h the event is de
lared, as well as in
omponents using this 
omponent (only if the event is also de
lared in the
omponent's interfa
e).Events are a
tive for one logi
al time step only. That means when several
WAIT statements and ON handlers are 
on
urrently waiting for an event,they get started based on the s
heduling s
heme as outlined above. Moreover,events are always propagated from the innermost blo
k outward. When aninner ON handler handles the event, further surrounding ON handlers will notre
eive it. Note, that this behavior only applies to events sin
e events aredea
tivated on
e they are handled. If, however, two nested ON handlers bothwait for a Boolean 
ondition, the outer handler may be a
tivated after theinner handler was a
tivated, if the 
ondition is still true.3.5 Example Control ProgramThis se
tion demonstrates programming in Mona
o with a sample appli-
ation. It shows how language 
onstru
ts presented in this 
hapter are em-ployed in realizing a 
omponent-based, hierar
hi
al 
ontrol program. First,we brie�y des
ribe the physi
al pro
ess of inje
tion molding. Next, we showthe de
omposition of the ma
hine into a hierar
hy of 
omponents, and thenshow the hierar
hi
al abstra
tion of 
ontrol fun
tionality by 
omponents atdi�erent hierar
hy levels.
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on
epts, we have developed several example appli
ationsin Mona
o. One has been a reimplementation of an existing 
ontrol pro-gram for an inje
tion molding ma
hine, whi
h was originally implementedin the IEC 61131-3 [IEC03℄ standard languages. We have implemented theevent-based part of the appli
ation in Mona
o and have 
oupled it with asimulator for testing purposes. The Mona
o program has led to a drasti
redu
tion in 
ode size to less than one �fth of the original 
ode, and, at thesame time, to a signi�
ant improvement in 
ode 
larity. Spe
ial emphasishas been put on handling errors and malfun
tions of the ma
hine. It hasbeen shown that the Mona
o language is 
apable of des
ribing ma
hinefailure handling in a 
ompa
t and 
on
ise way. In the following we show 
odefragments of a simpli�ed version of the example software system.Our example deals with inje
tion molding ma
hines. These ma
hines areused to produ
e plasti
 parts by inje
ting heated, semi-�uid plasti
 into amold where the plasti
 
ools down and hardens within a short period. In orderto produ
e plasti
 parts with various not
hes and holes, it is ne
essary to havean adaptable mold that inserts so-
alled 
ores into the molding 
hamberduring the inje
tion pro
ess. After the plasti
 part is hardened, the 
ores areremoved, the part gets eje
ted, and the pro
ess starts over again. During the
ooling phase, new raw material (plasti
 pellets) is heated up for the nextinje
tion phase.Figure 3.10 shows the stru
ture of the sample molding ma
hine. There aretwo main 
omponents in the ma
hine: the mold subsystem with the 
lamp,the eje
tor and a 
ore puller; and the nozzle subsystem that is mountedon a sledge with the material funnel, the heating system and the s
rew forinje
tion. Finally, the eje
tor serves the purpose of eje
ting the �nished partsout of the mold.3.5.2 Component Hierar
hyThe 
omponent hierar
hy of the 
ontrol program resembles the stru
ture ofthe real ma
hine (Figure 3.11). There is a dire
t mapping from the problemstru
ture to the solution stru
ture. On top, the Machine 
omponent is re-sponsible for en
oding the overall 
ontrol 
y
les. It knows di�erent operation
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Figure 3.10: Stru
ture of the molding ma
hine.

Figure 3.11: Component hierar
hy of the molding ma
hine.modes, e.g., full automati
 or half automati
 and relies on and 
oordinatesseveral sub
omponents 
orresponding to the di�erent ma
hine subsystems.The 
omponents for nozzle and mold are further de
omposed a

ording tothe di�erent parts of the subsystems. At the bottom of the hierar
hy there are
omponents for interfa
ing with lower level 
ontrol layers or the hardware.Those are usually implemented in the native language of the lower layers; inthis example program Java 
omponents build the interfa
e to the simulator.Components at di�erent hierar
hy levels typi
ally serve di�erent purposes
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ing with the hardwareor lower 
ontrol layers. They usually set and read basi
 system vari-ables. This layer is often referred to as hardware integration layer.� Components at the �rst level 
ompose primitive operations of the bot-tom layer into elementary 
ontrol routines and supervise their exe
u-tion.� Higher up in the hierar
hy there are several 
oordination 
omponentswhi
h 
oordinate and supervise the operations of several sub
ompo-nents.3.5.3 Control ComponentsInterfa
e to hardware and 
ontinuous 
ontrol layersIn the example program, the 
omponents forming the leaves of the 
ompo-nent hierar
hy are native Java 
lasses building the interfa
e to a simulatorwhi
h simulates the real ma
hine and the 
ontinuous 
ontrol layer. Native
omponents implement a Mona
o interfa
e whi
h represents the interfa
efor the 
omponents higher in the 
omponent hierar
hy (there is dire
t map-ping of routines, fun
tions and events to equally named Java methods). Thefollowing 
ode snippet (Figure 3.12) shows the interfa
e de�nition of the
ore puller 
omponent ICore. The interfa
e de�nes elementary routines toset system variables to start and stop insertion and removal of the 
ore anda fun
tion giving the 
urrent position of the 
ore puller.First level 
ontrol 
omponentsThe 
omponents residing in the hierar
hy level dire
tly above the native 
om-ponents use those interfa
es to 
ompose elementary operations into basi
 taskroutines. For example, the CoreCtrl 
omponent has the native 
omponent
core as its single sub
omponent. It de�nes two routines to insert and re-move the 
ore. Additionally, a stop routine is provided whi
h immediatelystops all movements.
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INTERFACE ICore
FUNCTION position() : REAL;

ROUTINE startInsert();
ROUTINE stopInsert();
ROUTINE startRemove();
ROUTINE stopRemove();

END Figure 3.12: Interfa
e ICore.
COMPONENT CoreCtrl IMPLEMENTS ICoreCtrl
PARAMETERS

coreMovementStartedTimeout : INT := 200;
coreInsertTimeout : INT := 1400;
coreInsertedPos : REAL := 0.6;
coreRemovedPos : REAL := 0.8;

SUBCOMPONENTS
core : ICore;

EVENTS error;

FUNCTION isInserted() : BOOL
BEGIN

RETURN core.position() >= coreInsertPos;
END inserted
...

END CoreCtrl Figure 3.13: Component CoreCtrl.The following 
ode snippet (Figure 3.13) shows part of the CoreCtrl
omponent. Besides showing de
laration of parameters, sub
omponents andevents, it also demonstrates how fun
tions are employed for abstra
ting stateproperties from lower level information of sub
omponents.Routines implement the basi
 
ontrol tasks. However, besides de�ningthe basi
 sequen
e of a
tions, routines also 
he
k for the 
orre
t exe
ution of
ontrol tasks and 
orre
t rea
tions from the subordinate. This 
an be doneusing ON handlers.The 
ode snippet (Figure 3.14) demonstrates this approa
h with the
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ROUTINE insert()
BEGIN
core.startInsert();
BEGIN

WAIT NOT core.isRemoved();
ON TIMEOUT(coreMovementStartedTimeout)

stop();
FIRE error;
RETURN;

END
BEGIN

WAIT core.isInserted();
core.stopInsert();

ON core.isRemoved()
stop();
FIRE error;
RETURN;

ON TIMEOUT(coreInsertTimeout)
stop();
FIRE error;
RETURN;

END
END insert Figure 3.14: Routine insert.
insert routine. First, startInsert is 
alled for the sub
omponent corewhi
h will set a hardware signal and start the insertion pro
ess. Next, a re-a
tion from the isRemoved signal is expe
ted. If this sensor does not goto false within a given (short) time period, a fault in the insertion pro
essor a faulty sensor has to be assumed; so the pro
ess is stopped and an errorevent is �red. Next, the insert routine waits for the isInserted signalto be
ome true and then stops the insertion pro
ess. Again the pro
ess is su-pervised by two ON handlers. The �rst handler 
he
ks that the isRemovedsignal does not swit
h to true again (whi
h might result from a faulty sensor).The se
ond handler 
he
ks that the rea
tion of the isInserted signal o
-
urs in time. In both error 
ases the pro
ess is stopped and the error eventis �red. Note, that this way, the insert routine is guaranteed to either run
orre
tly to its end or an error signal will o

ur.
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ontrol behavior de�ned so far is provided in a more abstra
t way inan interfa
e de
laration to the upper 
omponent. The following 
ode snippet(Figure 3.15) shows the interfa
e ICoreCtrl of the CoreCtrl 
omponent.There are routines for inserting, removing, and stopping the 
ore, as well astwo Boolean fun
tions telling if the 
ore is inserted or removed. Additionally,the error event appears in the interfa
e whi
h means that the upper 
om-ponent will be able to 
he
k for the errors o

urring during exe
ution of the
ontrol routines.
INTERFACE ICoreCtrl
EVENTS error;
FUNCTION isInserted() : BOOL;
FUNCTION isRemoved() : BOOL;
ROUTINE insert();
ROUTINE remove();
ROUTINE stop();

END ICoreCtrl Figure 3.15: Interfa
e ICoreCtrl.Coordination levelsAs next higher level 
omponent the MoldCtrl 
omponent is dis
ussed. This
omponent has to 
oordinate the operations of the core and the clampsub
omponents (see Figure 3.16).The 
ode snippet in Figure 3.17 exempli�es this by the close routine.Its purpose is to 
ontrol the pro
ess of 
losing the 
lamp and inserting the
COMPONENT MoldCtrl IMPLEMENTS IMoldCtrl
PARAMETERS

coreInsertPos: REAL := 150;
SUBCOMPONENTS

clamp : IClampCtrl;
core : ICoreCtrl;

...
END MoldCtrl Figure 3.16: Component MoldCtrl.
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ROUTINE close()
BEGIN
PARALLEL

clamp.close();
||

WAIT clamp.position() >= coreInsertPos;
core.insert();

END
ON core.error OR clamp.error
stop();
FIRE error;
RETURN;

END close Figure 3.17: Routine close.
INTERFACE IMoldCtrl
EVENTS error;
FUNCTION isOpen() : BOOL;
FUNCTION isClosed() : BOOL;
FUNCTION clampPos() : REAL;
ROUTINE open();
ROUTINE close();
ROUTINE stop();

END IMoldCtrl Figure 3.18: Interfa
e IMoldCtrl.
ore, whi
h should o

ur in parallel. However, insertion of the 
ore has tostart after the 
lamp has rea
hed the coreInsertPos. In this routine wedo not need to worry about timeouts and possible error 
onditions of the 
oreor any other sub
omponent. Those routines are already 
he
ked for 
orre
texe
ution and �re error events. Thus, it is su�
ient to have an ON handlerfor errors reported by the core and clamp sub
omponents (whi
h in thisexample again �res an event to inform its upper 
omponent). In this way,one gets a more abstra
t view of a subsystem. The 
ode in Figure 3.18 showsthe interfa
e of the MoldCtrl 
omponent.Finally, the following routine automatic represents the overall auto-mati
 
ontrol 
y
le of the ma
hine (Figure 3.19). This is usually the level



42 CHAPTER 3. MONACOwhi
h is also presented to end users. The operation 
y
le of the ma
hine gets
learly represented in the 
ode. In the inner 
ontrol loop �rst the mold is
losed. Then inje
tion is done and in parallel the 
ooling time is 
he
ked.Then, in parallel a
tivities, the mold is opened, new material is inserted intothe s
rew (nozzle.plasticize) and, after the mold has been opened toa determined point, the pie
e is eje
ted.



3.5. EXAMPLE CONTROL PROGRAM 43
ROUTINE automatic()
BEGIN
BEGIN

nozzle.startHeating();
WAIT nozzle.temperatureReached(nomTemp);
LOOP
BEGIN
mold.close();
PARALLEL
nozzle.inject();

||
WAIT TIMEOUT(coolingTime);

END

PARALLEL
nozzle.plasticize();

||
mold.open();

||
WAIT mold.clampPos() < 0.5;
ejectorCtrl.eject();

END
END

ON mold.error OR nozzle.error OR systemStopped()
PARALLEL
mold.stop();

||
nozzle.stop();

||
ejectorCtrl.stop();

END
END
nozzle.stopHeating();

END automatic Figure 3.19: Routine automatic.
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Chapter 4Contra
ts and Constraints
This 
hapter introdu
es 
ontra
ts as a mean for spe
ifying 
omponent behav-ior as well as 
onstraints that des
ribe dependen
ies between 
omponents.First, Se
tion 4.1 dis
usses 
ontra
ts and their relation to Mona
o 
ompo-nents. Se
tion 4.2 introdu
es an LTS-based automata formalism used to spe
-ify 
omponent behavior. The presented automaton formalism is augmentedwith pre- and post
onditions, as well as invariants in Se
tion 4.3. Constraints(safety properties) are presented in Se
tion 4.4. Finally, Se
tion 4.5 brie�ydes
ribes notations for 
ontra
ts and 
onstraints.4.1 Introdu
tionIn general, 
ontra
ts are formal agreements between two or more parties.Bertrand Meyer introdu
ed the paradigm of Design By Contra
t [Mey86℄whi
h de�nes 
ontra
ts as spe
i�
ations that des
ribe as 
losely as possiblethe mutual obligations and bene�ts involved in the 
ommuni
ation betweensoftware elements.This de�nition 
omprises more than usual interfa
es in obje
t-orientedprogramming languages orMona
o. Interfa
e de�nitions usually de�ne rou-tines and fun
tions with their parameter types and return values. While thisdes
ription states what 
an be done with an obje
t of this type (stru
ture,stati
 behavior), it does not state anything about the e�e
ts, valid sequen
es(dynami
 behavior), and valid state of routine 
alls. That is, it only spe
i�es45



46 CHAPTER 4. CONTRACTS AND CONSTRAINTSthe syntax and says nothing about the behavior of 
omponents.In 
ontrast, proto
ol 
ontra
ts as introdu
ed in this thesis, de�ne the dy-nami
 behavior in the 
ommuni
ation between software elements. They aresimilar to behavior proto
ols [PV02℄, sequen
ing 
onstraints in Ce
il [OO90℄,and interfa
e automata [dAH01℄ (see Se
tion 9.1). Proto
ol 
ontra
ts there-fore allow one to express the following aspe
ts of the dynami
 behavior of
omponents:Valid 
all sequen
es. Operations of 
omponents often require a 
ertainsequen
e in order to be su

essful. For example, a 
omponent's behavioroften 
onsists of an initialization phase, several operative a
tions, andeventually a termination phase. If this sequen
e is not obeyed, runtimeerrors o

ur, or in the domain of industrial automation, a ma
hine 
anbe damaged. It is therefore desirable to expli
itly state these restri
tionson the 
omponent usage and to be able to 
he
k and enfor
e thesesequen
es.E�e
ts of a 
all. Routine 
alls normally result in 
hanges of the 
omponentstate. These 
hanges (the e�e
ts of the routine) are 
alled guaranteesor post
onditions and 
an be expressed by Boolean 
onditions that areguaranteed to hold after the 
all to the routine.Requirements of a 
all. In order to be exe
utable, routines may requirethe 
omponent to be in a 
ertain state. Su
h a requirement is 
alled apre
ondition. A pre
ondition is expressed as a Boolean 
ondition thatneeds to hold before a 
all to the routine 
an be exe
uted.Initial state of a 
omponent. In order to dedu
e the situation of a 
om-ponent at a 
ertain position in the exe
ution, it is ne
essary to de�nethe initial situation, i.e. the state of the 
omponent before any routineof the 
omponent has been 
alled.Invariants. Invariants in proto
ol 
ontra
ts des
ribe immutable proposi-tions that help reasoning about 
omponent states by adding informa-tion about the dependen
ies of 
omponent properties. The dependen-
ies 
an be 
aused by physi
al ex
lusion of states.InMona
o we use proto
ol 
ontra
ts as outlined above to 
onstrain 
allsequen
es and to spe
ify the dynami
 behavior of 
omponents. In doing so, we
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o Interfa
e + Proto
ol Contra
tRoutine Routine

Sub
omponent Sub
omponentMona
o Interfa
e +Proto
ol Contra
t Mona
o Interfa
e +Proto
ol Contra
t
Mona
o Component

Figure 4.1: Proto
ol 
ontra
ts in the Mona
o 
omponent hierar
hy.exploit the hierar
hi
al stru
ture of Mona
o 
omponents. Sin
e ea
h 
om-ponent implements an interfa
e, and sub
omponents are spe
i�ed by theirinterfa
e type, the Mona
o 
omponent hierar
hy en
apsulates 
omponentsas illustrated in Figure 4.1. The �gure shows a 
omponent with two routines,and two sub
omponents ea
h spe
i�ed by their interfa
e. The interfa
es of thesub
omponents ea
h have a 
ontra
t des
ribing how the sub
omponents 
anbe used. The 
omponent itself also implements an interfa
e and a 
ontra
t.The 
ontra
t of the 
omponent de�nes how its routines 
an be 
alled.In the following, we introdu
e proto
ol 
ontra
ts for Mona
o 
ompo-nents whi
h are based on labeled transition systems (LTS) [BJK+05℄.
4.2 Automata FormalismThis se
tion reviews the well-known automata formalism labeled transitionsystems (LTS) [BJK+05℄ and introdu
es aMona
o-spe
i�
 extension of LTSwhi
h is used to 
apture the 
omponent behavior by en
oding it as valid eventsequen
es.



48 CHAPTER 4. CONTRACTS AND CONSTRAINTSDe�nition 4.1 A labeled transition system is a quadruple L = 〈S, I, A, T 〉that 
onsists of the following elements:� S is the set of states.� I ⊆ S is the set of initial states.� A is the set of a
tions (labels).� T ⊆ S ×A× S is the transition relation.In 
ontrast to �nite automata, LTS do not have �nal states, sin
e theyhelp reasoning about sequen
es of events, not about language a

eptan
e.Figure 4.2 shows an example of a labeled transition system 
onsisting ofthree states S = {1, 2, 3}, the initial states I = {1}, the a
tions A = {a, b, c},and the transition relation T = {(1, a, 2), (2, b, 3), (3, c, 1)}.123
a

b

c

Figure 4.2: Labeled transition system.To serve our spe
ial requirements of spe
ifyingMona
o 
omponent 
on-tra
ts, we extend LTS as follows. Routine 
alls inMona
o have syn
hronoussemanti
s and 
an be aborted during exe
ution. This semanti
s has to be re-�e
ted in the spe
ialized LTS by separating routine 
alls and routine returns.The set of a
tions will be 
onstrained to 
ontain only routine 
alls, routinereturns, events and an unobservable internal event. First, we formally intro-du
e a Mona
o 
omponent interfa
e.De�nition 4.2 Let I = 〈R, F, E〉 be the des
ription of a 
omponent inter-fa
e where the elements R, F , E have the following meaning:� R is the set of routine symbols.
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tion symbols.� E is the set of event symbols de�ned in the interfa
e.Remark: We disregard parameters in the des
ription of fun
-tions and routines. Parameters play a minor role in Mona
oprograms, while disregarding parameters eases the des
ription of
ontra
ts.De�nition 4.3 We 
all our extension of LTS proto
ol automata. A proto
olautomaton is a quadruple PA = 〈S, sinit, A, T 〉 des
ribing an LTS with onlya single initial state and a 
onstrained set of a
tions.� S is the set of states.� sinit ∈ S is the initial state. In 
ontrast to LTS, we only need exa
tlyone initial state as a 
omponent typi
ally has exa
tly one initial state.� A = R×{call, ret}∪{τ} is the set of a
tions (alphabet). R is the set ofroutine symbols de�ned in the interfa
e of a Mona
o 
omponent (seeabove). τ is the empty a
tion representing an un
onditional, immediatetransition.� T ⊆ S ×A× S is the transition relation.The set of a
tions A 
an be further subdivided into the sets Acall = R ×

{call} and Aret = R×{ret}. These sets are 
alled the sets of 
all a
tions andreturn a
tions. Similarly, the set Tcall = S×Acall×S and Tret = S×Aret×Sare 
alled the set of 
all and return transitions, respe
tively.The separation of routine 
alls and routine returns is illustrated by twoexamples in Figure 4.3. Example (a) shows a proto
ol automaton 
onsistingof three states and two transitions. State 1 is the single initial state. The twotransitions represent exe
ution of routine r1. The 
all is separated into the
all and the return from the 
all. The �rst transition is a 
all transition, whilethe se
ond is a return transition. Figure 4.3 (b) shows a proto
ol automatonsimilar to the one in (a). The di�eren
e is in the 
all to routine r1, whi
h 
aneither return (r1, ret) or be aborted. The additional transition from state 2to state 3 is a τ transition des
ribing an unobservable internal event. Theuse of τ transitions will be explained in Se
tion 4.3.
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123

(r1, call)

(r1, ret)

(r1, call)

(r1, ret) τ(a) (b)Figure 4.3: Proto
ol automata showing the separation of routine 
all androutine return and di�erent types of transitions.4.3 Interfa
e Contra
tWe use 
ontra
ts to des
ribe valid 
all sequen
es of routines for a Mona
ointerfa
e. They are based on the notion of proto
ol automata presented above(Se
tion 4.2), but have additional information like pre
onditions and post-
onditions stating required states and guarantees about the behavior of a
omponent.4.3.1 Pre-, Post-, and Initial-ConditionsContra
ts 
ontain pre- and post
onditions to express requirements and guar-antees of 
omponent properties in 
ertain states. Guarantees 
an be expli
itly
an
eled using retra
tion, and guarantees about the initial values of 
ompo-nent properties 
an be made. These 
onditions are re�e
ted in a 
ontra
t bythe fun
tions Pre, Post, Retract, and Initial.Pre- and post
onditions are logi
al propositions over all fun
tion sym-bols plus numeri
al and Boolean 
onstants. That means we use the fun
tionsymbols from F as logi
al variables. Fun
tions with numeri
al return type
an be used with relational operators and numeri
al 
onstants. We allow the
ombination of logi
al expressions with the logi
al operators ∧, ∨, and ¬.We denote the set of all satis�able logi
al propositions over symbols f ∈ Ffor an interfa
e I as C.De�nition 4.4 Let S be the states of a proto
ol automaton. Then we de�ne



4.3. INTERFACE CONTRACT 51four fun
tions:� Pre : S → C is the fun
tion mapping states to the set of pre
onditions.The semanti
s of a pre
ondition of a state is that this 
ondition mustbe ful�lled before the state 
an be rea
hed (i.e. the transition leading tothe state 
an be exe
uted).� Post : S → C is the fun
tion mapping states to the set of post
onditionswith the meaning that the given 
ondition is guaranteed to be true afterthe state is left (i.e. the transition leaving the state is exe
uted).� Retract : S → P(F ) maps states to fun
tion symbols. The semanti
s ofretra
tion of a fun
tion symbol is, that any guarantee about this symbolis retra
ted.� Initial ∈ C des
ribes the initial 
onditions holding before any routinehas been 
alled. This des
ription is 
alled initial 
ondition and 
an beregarded as a guarantee, that the 
omponent initially is in a 
ertainstate.By default, a guarantee holds, until it is invalidated by a more re
entguarantee. For details about knowledge update and retra
tion, refer to Se
-tion 6.3.4.3.2 InvariantsComponents have state properties with logi
al dependen
ies on ea
h other.A dependen
y is often due to physi
al laws prohibiting 
on
urrent presen
eof two states. These dependen
ies 
an be formulated as Boolean formulas,
alled invariants. In the literature, su
h invariants are also referred to asintegrity 
onstraints [HR99,Win90℄. If these invariants are stated expli
itly,they help in the knowledge dedu
tion pro
ess by adding additional knowledgeand keeping the knowledge base 
onsistent.For example, let's assume we have a hydrauli
 
ylinder 
omponent that
an be opened and 
losed. Its observable properties are the Boolean fun
tions
isOpen and isClosed. Both properties 
an never be true simultaneously.Yet, it is possible that the 
omponent is neither opened nor 
losed (it is in
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[Invariant: NOT (isOpen() AND isClosed())]Listing 4.1: Invariant des
ribing the logi
al dependen
y between isOpenand isClosedsome intermediate position). An invariant des
ribing the dependen
y of theseproperties together with the knowledge of one of the properties allows us todedu
e that the other property does not hold. Listing 4.1 shows an exam-ple invariant des
ribing the logi
al dependen
y between the two propertiesmentioned above.De�nition 4.5 We asso
iate a set of invariant 
onditions Inv with an in-terfa
e 
ontra
t. Inv ∈ C, that means invariant 
onditions are logi
al propo-sitions over the fun
tion symbols F (see above).4.3.3 SummaryIn summary, an interfa
e 
ontra
t 
onsists of the following elements:� PA = 〈S, sinit, A, T 〉 is the proto
ol automaton de�ning valid 
allsequen
es.� Pre : S → C is the fun
tion mapping states to the set of pre
onditions.� Post : S → C is the fun
tion mapping states to the set of post
ondi-tions.� Retract : S → P(F ) is the fun
tion mapping states to propositionalsymbols for retra
tion of knowledge.� Inv ∈ C is the set of invariant 
onditions (integrity 
onstraints).4.3.4 ExamplesIn the following, two example 
ontra
ts will be presented, showing pre-, post-and initial 
onditions, as well as invariants. An example for knowledge re-tra
tion is presented in Se
tion 6.3.2. The �rst example shows a 
ontra
t fora hydrauli
 
ylinder. The 
ylinder 
an be opened and 
losed. The interfa
e of
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INTERFACE ICylinder
ATOMIC ROUTINE startOpen();
ATOMIC ROUTINE startClose();
ATOMIC ROUTINE stop();

FUNCTION isOpen() : BOOL;
FUNCTION isClosed() : BOOL;

END ICylinderListing 4.2: Interfa
e of a 
ylinder 
omponentthe 
ylinder 
omponent is shown in Listing 4.2. The routines startOpen,
startClose, and stop atomi
ally start or stop a movement of the 
ylinder.The Boolean fun
tions isOpen and isClosed return whether the 
ylinderis fully opened or fully 
losed.To make the graphi
al representation more readable, transitions in thegraphi
al representation of proto
ol automata will be labeled with r! for rou-tine 
alls (instead of (r, call)) and r? for routine returns (instead of (r, ret)).The 
ontra
t for the ICylinder interfa
e is as follows: the 
ylinder
an be opened with the routine 
all startOpen and 
losed with a 
all ofthe routine startClose. The e�e
t of a routine 
all is that the openingrespe
tively 
losing movements are started and the routine 
all immediatelyreturns. The movement 
an be stopped using the routine stop.The two fun
tions of the interfa
e report whether the 
ylinder is 
urrentlyopened, 
losed, or neither opened nor 
losed (both fun
tions return false).Figure 4.4 shows the proto
ol automaton for this 
ontra
t. Note that the
ontra
t does not state that the startClose routine 
auses the isClosedfun
tion to evaluate to true. The only 
on
lusion that 
an be made is thatstarting the 
lose movement makes isOpen evaluate to false. Note, that thepost
onditions are asso
iated with the states representing the exe
ution ofthe routine. The post
onditions hold, as soon as this state is left.Additionally an invariant states that the 
ylinder 
an never be openand 
losed simultaneously. The invariant is given by Inv = {¬(isOpen ∧

isClosed)}.The se
ond example des
ribes a 
ontra
t for a driller ma
hine like the oneshown in Figure 4.5. The ma
hine 
onsists of two sub
omponents, a drillerand a 
ooler. The interfa
e IDriller of the driller 
omponent de
lares
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startClose! startClose?

Post : ¬isOpen()

startOpen! startOpen?Post : ¬isClosed()

stop!stop?Figure 4.4: Proto
ol automaton for the ICylinder interfa
e.

Figure 4.5: Driller and 
ooler 
omponent
routines and fun
tions as outlined in Listing 4.3. The intended behavior of theinterfa
e is, that any 
omponent implementing this interfa
e should �rst bestarted, then be moved down and up in turn and eventually be stopped. Thebehavior is illustrated by the proto
ol automaton in Figure 4.6. It 
ontainspost
onditions that guarantee the e�e
ts of exe
ution of the routines andhas the initial 
ondition ¬isStarted(). Moreover, the 
all of routine downhas a pre
ondition requiring that a 
ertain revolution speed must be rea
hed(rpmReached()).The interfa
e ICooler for the 
ooler 
omponent de
lares the routines
start and stop, as well as the fun
tion isCooling. The 
ooler 
omponentkeeps the temperature of the driller at an a

eptable level. Its behavior isdes
ribed by the proto
ol automaton shown in Figure 4.7. It des
ribes thatthe 
ooler 
an be started and stopped. Additionally, the e�e
ts of the tworoutines are spe
i�ed as post
onditions.
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INTERFACE IDriller
ATOMIC ROUTINE start();
ATOMIC ROUTINE stop();
ATOMIC ROUTINE down();
ATOMIC ROUTINE up();
FUNCTION isStarted() : BOOL;
FUNCTION isDrilling() : BOOL;
FUNCTION rpmReached() : BOOL;

END IDriller

INTERFACE ICooler
ATOMIC ROUTINE start();
ATOMIC ROUTINE stop();
FUNCTION isCooling() : BOOL;

END ICoolerListing 4.3: Interfa
es of a driller and a 
ooler 
omponent
Pre : rpmReached()

Post : isDrilling()
Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?Figure 4.6: Proto
ol automaton for the IDriller interfa
e.
start! start?

stop!stop?

Post : isCooling()

Post : ¬isCooling()Figure 4.7: Proto
ol automaton for the ICooler interfa
e.4.4 ConstraintsPropositional 
onstraints des
ribe safety properties (refer to Se
tion 2.2.1)that must be true in every state of the system ("something bad will neverhappen"). In 
ontrast to invariants, 
onstraints are not maintained by thephysi
al world, but rather des
ribe that possibly fatal states must not berea
hable.



56 CHAPTER 4. CONTRACTS AND CONSTRAINTSConstraints de�ne relationships between several 
omponents and there-fore do not belong to a 
ontra
t of a single 
omponent. For example, imaginea 
omponent having multiple sub
omponents. The sub
omponents are in-dependent as they have separate 
ontra
ts des
ribing their lo
al behavior,disregarding the existen
e of other 
omponents. This stri
t separation of
omponents allows for simple ex
hange of 
omponent implementations. Nev-ertheless, it is ne
essary to provide me
hanisms to syn
hronize two or more
ontra
ts, i.e., to des
ribe states that the 
ombination of those 
omponentsshould never rea
h.Let's assume, there is a 
omponent c with sub
omponents with interfa
es
I1, I2, . . . In where ea
h interfa
e Ii 
onsists of the elements Ii = 〈Ri, Fi, Ei〉.Then we asso
iate with the 
omponent c a 
onstraints Constrc being a logi
alproposition over symbols f ∈

⋃
i Fi.Assume we have a drilling ma
hine as de�ned above. In this example, a
onstraint is that the driller must not be drilling before the 
ooler is 
ool-ing. Similarly, the 
ooler must not be stopped, while the driller is drilling.Thus, the proposition des
ribing this 
onstraint is ¬(driller.isDrilling() ∧

¬cooler.isCooling()).Remark: In order to avoid name 
lashes in 
onstraints, fun
tionsymbols are quali�ed with the name of the sub
omponent theybelong to.4.5 NotationsIn the following, we introdu
e two di�erent notations for des
ribing 
ontra
ts.The �rst notation only allows us to des
ribe valid 
all sequen
es. The se
ondnotation is more powerful and allows spe
ifying all aspe
ts of a 
ontra
t.4.5.1 EBNF NotationThis notation is based on the standard meta language EBNF (Extended BNF,ISO 14977 [ISO96b℄). The notation does not make use of non-terminal sym-bols, but ea
h produ
tion des
ribes the 
omplete 
ontra
t for an interfa
eas a regular expression. The terminal symbols allowed are all routine names
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. . .

. . . . . .1 . . .2
(r1, call)

(r1, ret)

(r1, call)

(r1, ret)

(r2, call)

(r2, ret)

τ

r1 r1 r2 [...] {...} (...1 | ...2)Figure 4.8: Translation of EBNF to proto
ol automata (. . . stands for anarbitrary subexpression).in the set R (see proto
ol automata above), denoting the routines of theMona
o interfa
e, to whi
h the 
ontra
t belongs.The following EBNF metasymbols are available (... stands for an arbitrarysubexpression):� [...] The 
ontained subexpression is optional.� {...} The 
ontained subexpression 
an be repeated arbitrary manytimes (in
luding zero times).� (...) Groups subexpressions.� (... | ...) Separator for alternative subexpressions. The subexpressionsare 
hosen nondeterministi
ally.� . (period) Terminates the de�nition of a proto
ol 
ontra
t.The 
onversion of terminal symbols and the metasymbols into proto
olautomata is straight-forward. Figure 4.8 shows the resulting proto
ol auto-mata for single symbols, symbol sequen
es and the presented metasymbols.Routine symbols are 
onverted into an automaton 
onsisting of three nodes,
onne
ted by a 
all and a return transition. The �rst node is the initialstate, the intermediate state represents the running routine, the last stateis the state after the routine is exe
uted. Sequen
es of terminal symbols aretranslated by 
reating the proto
ol automata of individual symbols and thenmerging the end state of the �rst symbol's proto
ol automaton with the ini-tial state of the se
ond symbol's proto
ol automaton. The metasymbols for
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start! start? stop! stop?

down?up!

down!up?Figure 4.9: Proto
ol automaton resulting from Listing 4.4.optionality add a τ transition from the initial state to the end state of thesubexpression, thus allowing to omit the subexpression. The metasymbolsfor repetition merge the initial and the end state to a 
ommon state whi
h isthe initial state of the resulting automaton. Alternative subexpressions are
reated by merging all initial states and all end states of the subexpressions.Appendix C gives a full listing of the grammar of the EBNF notation.The EBNF notation is demonstrated by the following example. Let's as-sume we have an interfa
e IDriller de
laring the routines start, stop,
down, and up. The intended behavior of the interfa
e is, that any 
omponentimplementing this interfa
e should �rst be started, then be moved down andup in turn and eventually be stopped. The proto
ol 
ontra
t for IDrillerin EBNF notation is listed in Listing 4.4.
IDriller = start { down up } stop .Listing 4.4: Contra
t for IDriller in EBNF notationFigure 4.9 shows the proto
ol automaton resulting from the 
ontra
t forthe IDriller interfa
e.4.5.2 Detailed Proto
ol Contra
t NotationThis notation expli
itly enumerates all states of the proto
ol automaton,together with all transitions between the states and the initial, pre-, andpost
onditions as well as the invariants.The notation starts with the de
laration of the Mona
o interfa
e, fol-lowed by the initial 
ondition, the invariants and a list of state de
larations.A state de
laration de
lares a state with a unique identi�er (unique withinthe proto
ol 
ontra
t) followed by a list of pre- and post
onditions for thestate. Then all outgoing transitions are listed. A transition is either a routine
all, or a routine return, spe
i�ed with the routine name followed by a ! or
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Interface IDriller d [Initial: NOT d.isStarted()]:
initial s0 = start!s1.
s1 [Post: d.isStarted()] = start?s2.
s2 = stop!s3 down!s4.
s3 [Post: NOT d.isStarted()] = stop?s7.
s4 = down?s5.
s5 = up!s6.
s6 = up?s2.
s7 = .Listing 4.5: Contra
t for IDriller in detailed proto
ol 
ontra
t notationa ? respe
tively, or a τ -transition.Imagine that we want to extend the proto
ol 
ontra
t in Figure 4.9 byadding the state property isStarted, modeled as a Boolean fun
tion in the
IDriller interfa
e. Listing 4.5 shows this extended proto
ol 
ontra
t for
IDriller in the detailed proto
ol 
ontra
t notation. The resulting 
ontra
tis pi
tured in Figure 4.10. Note that states s1 and s3 now have a post
ondi-tion.For sake of brevity, names of states are 
hosen very short. For a betterreadability one would 
hoose more des
riptive state names like init, starting,started, and so forth.In summary, the detailed proto
ol 
ontra
t notation is mu
h more expres-sive, sin
e it 
an be used to des
ribe all features of a 
ontra
t. In pra
ti
e,one would often start with an EBNF des
ription of a 
ontra
t, whi
h 
anbe translated into proto
ol automata and then ba
k into the detailed pro-to
ol 
ontra
t notation. Hen
eforward, one would only adapt the generateddetailed proto
ol 
ontra
t notation by adding pre- and post
onditions, in-variants, and initial 
onditions as ne
essary.Appendix D gives a full listing of the grammar of the detailed proto
ol
ontra
t notation.4.5.3 Constraint NotationConstraints refer to state properties of Mona
o sub
omponents (in generalde
lared by their interfa
e). In order to express su
h properties, we �rstde
lare sub
omponents and then give 
onstraints as Boolean propositions.
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s6 s5 s4

s0 s1

Post : isStarted()

s2 s3

Post : ¬isStarted()

s7
start! start? stop! stop?

down?up!

down!up?Figure 4.10: Proto
ol automaton resulting from Listing 4.5.
CONSTRAINT (ICooler cooler, IDriller driller)

[NOT (driller.isStarted() AND NOT cooler.isCooling())]Listing 4.6: Driller/Cooler 
onstraintListing 4.6 shows the 
onstraint de�ned above: the 
onstraint a�e
ts the
omponents cooler and driller implementing the interfa
es ICoolerand IDriller respe
tively. The 
ondition states that it must never happenthat the driller is started (driller.isStarted()) but the 
ooler is not
ooling (NOT cooler.isCooling).Appendix E gives a full listing of the grammar of 
onstraints.



Chapter 5Implementation Automaton
Chapter 4 introdu
ed the notion of 
ontra
ts, proto
ol automata, and 
on-straints des
ribing valid behavior of 
omponents. In this 
hapter we introdu
emeans to represent 
omponent implementations as automata. In Chapter 6then, we will see how our veri�
ation approa
h uses implementation auto-mata to 
he
k them against 
ontra
ts and 
onstraints.Se
tion 5.1 introdu
es implementation automata, an automata formalismsimilar to proto
ol automata. Implementation automata re�e
t the a
tualsequen
e of 
alls in aMona
o 
omponent. In order to 
reate the implemen-tation automaton of a 
omponent, it is ne
essary to 
reate sub-automata forevery routine of the 
omponent (
f. Se
tion 5.2). These automata will thenbe inserted into the automaton of the 
omponent's 
ontra
t. The insertionof the routine automata into the parent 
omponent 
ontra
t is 
alled re�ne-ment and presented in Se
tion 5.3. The implementation automaton therebybe
omes an abstra
t representation of all possible exe
ution paths of a 
om-ponent.5.1 Automata FormalismImplementation automata are similar to proto
ol automata presented in Se
-tion 4.2. Implementation automata represent the a
tual 
ontrol �ow withina 
omponent and 
ontain all 
alls to sub
omponents, as well as 
alls to lo
alroutines. 61



62 CHAPTER 5. IMPLEMENTATION AUTOMATONFirst, we introdu
e a formal des
ription of a Mona
o 
omponent.De�nition 5.1 Let C = 〈R, F, E, SC〉 be the des
ription of a 
omponentwhere the 
omponents R, F , E, SC have the following meaning:� R is the set of routine symbols.� F is the set of fun
tion symbols.� E is the set of event symbols de�ned in the 
omponent.� SC is the set of sub
omponents. Let sc ∈ SC be a sub
omponent.The fun
tion name(sc) then gives the name of the sub
omponent, while
type(sc) gives the interfa
e of the sub
omponent. Re
all that sub
ompo-nents 
an only be de
lared with interfa
e types.Remark:We disregard parameters in the des
ription of fun
tionsand routines. Parameters play a minor role inMona
o programsin general, and in the veri�
ation approa
h in parti
ular, whiledisregarding parameters eases the des
ription.Based on the de�nition of 
omponents we introdu
e implementation au-tomata.De�nition 5.2 We 
all the LTS-based automata formalism for des
ribingimplementation details implementation automata. An implementation auto-maton is a quintuple IA = 〈S, sinit, A, sfinal, T 〉 des
ribing an LTS with onlya single initial state, a 
onstrained set of a
tions and a �nal state:� S is the set of states.� sinit ∈ S is the initial state.� A = R × {call, ret} ∪ SCR × {call, ret} ∪ {τ} is the set of a
tions(alphabet). R is the set of routine symbols de�ned in the Mona
o
omponent (see above). SCR is the set of sub
omponent routine sym-bols. That means let sc ∈ SC be a sub
omponent with type(sc) = Isc =

〈Rsc, Fsc, Esc〉 then SCR =
⋃

sc∈SC Rsc. τ is the empty a
tion repre-senting an un
onditional, immediate transition.



5.1. AUTOMATA FORMALISM 63� sfinal ∈ S is the �nal state.� T ⊆ S ×A× S is the transition relation.Remark: In the following, routine symbols of sub
omponentsare quali�ed with the name of the respe
tive sub
omponent
name(sc). For example, 
onsider a sub
omponent driller oftype IDriller. The symbol for the sub
omponent's routine
start would then be driller.start.Additionally, two fun
tions are introdu
ed to represent 
onditions at-ta
hed to states of the implementation automaton. In the following, 
ondi-tions are logi
al propositions over all fun
tion symbols of sub
omponents plusnumeri
al and Boolean 
onstants. That means that we use the fun
tion sym-bols from Fsc as logi
al variables. Fun
tions with numeri
al return type 
anbe used with relational operators and numeri
al 
onstants. We allow the 
om-bination of logi
al expressions with the logi
al operators ∧, ∨, and ¬. Thatmeans let sc ∈ SC be a sub
omponent with type(sc) = Isc = 〈Rsc, Fsc, Esc〉then allowable fun
tion symbols are ⋃

sc∈SC Fsc. We denote the set of alllogi
al propositions over symbols f ∈
⋃

sc∈SC Fsc as C.The fun
tions to represent 
onditions atta
hed to states are:� CFC : S → C is the fun
tion mapping states to 
ontrol �ow 
onditions.These 
onditions stem from 
ontrol �ow statements like IF, WHILE or
WAIT and are valid at the asso
iated states.� Post : S → C is the fun
tion mapping states to post
onditions. Thesepost
onditions stem from the 
ontra
t of the 
omponent and need tobe veri�ed in the 
omponent implementation. For details on these post-
onditions, see Se
tion 6.6.1.Figure 5.1 shows the overall pro
ess of 
reating an implementation auto-maton: First, the automata of the routines are 
reated. These automata arethen inlined into the 
omponent's proto
ol automaton wherever a 
all to therespe
tive routine is found. The automaton of a routine may even be inlinedmultiple times, if there is more than one 
all in the proto
ol automaton. Inlin-ing routine 
alls is only possible be
auseMona
o disallows re
ursive routine
alls (Se
tion 3.3.1). In the following, we show the 
onstru
tion pro
ess indetail.
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o Interfa
e Contra
t+Routine a() Routine b()

. . .a . . .b

a!

a?

b!

b?

Interfa
e Contra
t
ImplementationAutomaton
. . .a . . .bFigure 5.1: The full implementation automaton of a 
omponent is built fromthe implementation automata of its routines, inlined into the 
omponent'sproto
ol automaton.5.2 From Mona
o to an AutomatonThis se
tion des
ribes how an implementation automaton is 
reated froman existing implementation of a Mona
o 
omponent. We will start by �rstde�ning how routine 
alls are translated to implementation automata. Then,we will show 
on
atenation of implementation automata to model a sequen
eof routine 
alls (or other statements). The last part of this se
tion deals withMona
o 
ontrol �ow statements and their translation to implementationautomata.5.2.1 Routine CallsRoutine 
alls to sub
omponents are the essential statements upon whi
h webuild implementation automata. The following 
ode example shows a 
all tothe routine RoutineA of the sub
omponent subc.
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subc.RoutineA();Listing 5.1: Calling a ROUTINE of a sub
omponentRemark: Calls of 
omponent routines (
ontrary to sub
ompo-nent routines) are treated as if the statements of the routine wereinlined at the lo
ation of the routine 
all.As in proto
ol automata, routine 
alls are modeled by two transitions: the�rst transition models the 
all of the routine (r, call), the se
ond transitionmodels the return of the routine 
all (r, ret).De�nition 5.3 A 
all of a routine r of a sub
omponent 
reates an imple-mentation automaton P as follows:� SP = {s, s′, s′′} is the set of states ne
essary to express a 
all. The state

s is the state before the 
all, the state s′ is the state during the 
all andthe state s′′ is the state after the 
all.� sinit
P = s is the state before the routine 
all.� AP = {(subc.RoutineA, call), (subc.RoutineA, ret)} is the set of a
-tions used in this implementation automaton.� sfinal
P = s′′ is the state after the 
all of the routine.� TP = {(s,(subc.RoutineA, call), s′),(s′, (subc.RoutineA, ret), s′′)} is theset of transitions between the states.Remark: If the 
alled routine r is atomi
 (
f. Se
tion 3.3.1) thenthe property isAtomic(s′) holds.Figure 5.2 shows an implementation automaton that models su
h a simpleroutine 
all.Remark: The presented notation of implementation automataonly 
ares about routine 
alls to sub
omponents and WAIT/IFstatements (for knowledge extra
tion). Therefore all other state-ments (ex
ept for 
ontrol �ow statements) like assignment state-ments are ignored.
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s

s′

s′′

(r, call) ∈ Acall

(r, ret) ∈ AretFigure 5.2: Implementation automaton for a simple routine 
all.5.2.2 Statement Sequen
esIn imperative programming languages �Mona
o is one of them � programstypi
ally 
onsist of statements that are exe
uted in sequen
e. To re�e
t asequen
e of routine 
all statements, implementation automata 
an be 
on-
atenated. The following 
ode example shows the sequen
e of two routine
alls.
subc.RoutineA();

subc.RoutineB();Listing 5.2: Calling two ROUTINEs of a sub
omponentStatement sequen
es, su
h as two 
onse
utive routine 
alls are generatedby automaton 
on
atenation. The 
on
atenation simply merges the �nal stateof the implementation automaton of the �rst statement with the initial stateof the implementation automaton of the se
ond statement.De�nition 5.4 In general, the 
on
atenation (sequential 
omposition) P ◦Qof two implementation automata P and Q is de�ned as follows:� SP◦Q = SP ∪ SQ \ sinit
Q . The set of states 
onsists of the states of bothimplementation automata, without the initial state of the se
ond auto-maton.� sinit

P◦Q = sinit
P . The initial state of the �rst automaton remains the initialstate of the resulting automaton.� AP◦Q = AP ∪ AQ. The set of a
tions is the union of the a
tions of thetwo implementation automata.



5.2. FROM MONACO TO AN AUTOMATON 67� sfinal
P◦Q = sfinal

Q . The �nal state of the se
ond automaton remains the�nal state of the resulting automaton.� TP◦Q = TP ∪ {(s, a, s′) ∈ TQ | s 6= sinit
Q } ∪ {(s

final
P , a, s′) | (sinit

Q , a, s′) ∈

TQ} ∪ {(s, a, sfinal
P ) | (s, a, sinit

Q ) ∈ TQ}. The transitions in the 
on
ate-nated implementation automaton 
onsist of all transitions of the �rstautomaton plus all transitions of the se
ond automaton where transi-tions involving the initial state are bent over to the �rst automatons�nal state.
s1

s′1

s′′1

(r1, call)

(r1, ret)

s2

s′2

s′′2

(r2, call)

(r2, ret)

s1

s′1

s′′1

s′2

s′′2

(r1, call)

(r1, ret)

(r2, call)

(r2, ret)(a) (b) (
)
P Q P ◦QFigure 5.3: Implementation automata for simple routine 
alls ((a) and (b))and the 
on
atenation (
) of the two proto
ol automata.Figure 5.3 (
) shows the 
on
atenation of two automata. Note that P ◦Qmeans that P is exe
uted prior to the exe
ution of Q.5.2.3 Wait StatementThe WAIT statement ensures that a 
ertain 
ondition holds by suspendingexe
ution until the 
ondition holds. Therefore we 
an use the 
ondition inthe implementation automata by adding this knowledge as a 
ontrol �ow
ondition to a new state s.
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sCFC: cFigure 5.4: Implementation automaton for a wait statement.De�nition 5.5 Adding new knowledge through the WAIT statement 
reatesa single-state automaton as follows:� Swait = {s}. s is the single state of the implementation automaton.� sinit

wait = s. The single state s is the initial state.� Await = ∅. No a
tions are in this single state automaton.� sfinal
wait = s. The single state s is the �nal state.� Twait = ∅. There are no transitions in this automaton.� CFCwait = {(s, {c})} The CFC fun
tion for state s maps s to the
ondition of the WAIT statement.Figure 5.4 shows the implementation automaton resulting from a WAITstatement. Listing 5.3 shows a WAIT statement waiting for the fun
tion

isStarted of the sub
omponent subc to be
ome true.
WAIT (subc.isStarted());Listing 5.3: A Mona
o WAIT statement waiting for a sub
omponent.5.2.4 Bran
h StatementThe Mona
o IF statement 
an be used to bran
h the 
ontrol �ow. It allowsone to spe
ify any number of IF bran
hes and one optional ELSE bran
h.Depending on the evaluation of the 
onditions, the 
ontrol �ow 
hooses oneof the bran
hes.The semanti
s of the IF statement allows us to regard only a simple IFwith an ELSE bran
h, sin
e ELSIF bran
hes 
an be seen as ELSE bran
heswith an IF statement.
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reate the implementation automaton for an IF statement, �rst theimplementation automata of the IF and ELSE bran
h are built separately. Ifno ELSE bran
h exists, the implementation automaton for the non-existentbran
h 
onsists of only a single state, being the initial and �nal state. Thebran
hing of the two implementation automata 
reates a 
ommon initial stateas well as a 
ommon �nal state.De�nition 5.6 The bran
hing automaton of two implementation automata
P and Q, where P des
ribes the IF bran
h, and Q des
ribes the ELSE bran
hof an IF statement, 
an be de�ned as follows:� SP |Q = SP ∪ SQ ∪ {sI , sF} where sI and sF are new states.� sinit

P |Q = sI is the new initial state. This state is where the automatonbran
hes.� AP |Q = AP ∪ AQ is the 
ombined set of a
tions.� sfinal
P |Q = sF . The new state sF is the new �nal state. This is where thebran
hes merge.� TP |Q = TP ∪TQ∪{(s

final
Q , τ, sF ), (sfinal

P , τ, sF ), (sI , τ, s
init
P ), (sI , τ, s

init
Q )}.The set of transitions is extended by τ -transitions from the 
ommoninitial state sI to the initial states of P and Q. Similarly, τ -transitionsfrom the �nal states of P and Q to the 
ommon �nal state sF are added.� CFCP |Q = CFCP ∪ CFCQ ∪ {(s

init
P , {c}), (sinit

Q , {¬c})} is the 
ontrol�ow 
onditions fun
tion, where c is the bran
hing 
ondition.Figure 5.5 shows the automaton for an IF statement that has twobran
hes. The 
onditions of the bran
hes are as re�e
ted in the automa-ton as 
ontrol �ow 
onditions (CFC) at the bran
hing states.5.2.5 RepetitionsThe repetition of a blo
k using Mona
o's WHILE statement is done by �rst
reating the implementation automaton P of the blo
k that is to be repeated.The next step is to 
onne
t the �nal state of the blo
k with a τ -transition tothe initial state.
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sI

sinit
PCFC: c sinit

QCFC: ¬c

P Q

sfinal
P

sfinal
Q

s′′1

τ

τ

τ

τFigure 5.5: Implementation automaton for the Mona
o IF statement. Theautomaton shows two bran
hes.De�nition 5.7 The implementation automaton for repeated exe
ution of a
ode blo
k P with Mona
o's WHILE statement is de�ned by:� S	 = SP ∪{sI , sF} is the set of states, where sI and sF are new states.� sinit
	 = sI is the new initial state.� A	 = AP . The set of a
tions remains the same.� sfinal
	 = sF is the single �nal state.� T	 = TP ∪{(sI , τ, sF )}∪{(sI , τ, s

init
P )}∪{(sfinal

P , τ, sI)}. Transitions areadded from sI to the old initial state and the new �nal state, as well asfrom the old �nal state to sI .� CFC	 = CFCP ∪ {(s
init
P , c)} ∪ {(sF ,¬c)} is the 
ontrol �ow 
onditionfun
tion, where c is the WHILE 
ondition.Figure 5.6 shows the implementation automaton resulting from the 
odein Listing 5.4.
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WHILE c

BEGIN

subc.RoutineA();

subc.RoutineB();

END Listing 5.4: WHILE statement
sI

sFCFC:¬c sinit
QCFC:c
P

sfinal
Q

τ
τ

τ

Figure 5.6: Implementation automaton for the Mona
o WHILE statement.5.2.6 Parallel StatementThe PARALLEL statement is used to exe
ute 
ode in parallel. The followingexample shows the parallel exe
ution of two routine 
alls.
PARALLEL

subc.RoutineA(); // first parallel code block

||

subc.RoutineB(); // second parallel code block

END Listing 5.5: PARALLEL statementThe implementation automaton for the PARALLEL statement is 
reated byasyn
hronous 
omposition of the implementation automata of the parallel
ode blo
ks. We generate all possible interleavings of the parallel 
ode blo
ks.The de�nition of asyn
hronous parallel 
omposition is asso
iative [Bie08℄,
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an be 
onstru
ted by �rst 
reating the parallelautomaton I1 ‖ I2, and then using the resulting automaton to 
reate (I1 ‖

I2) ‖ I3. Therefore, we show the interleaving of two parallel blo
ks only.De�nition 5.8 Let P , Q be two implementation automata, ea
h represent-ing a 
ode blo
k. The asyn
hronous 
omposition P ‖ Q of the two automata
an be de�ned as:� SP‖Q = SP × SQ. The set of states of two parallel automata is theCartesian produ
t of the sets of the two automata.� sinit
P‖Q = (sinit

P , sinit
Q )� AP‖Q = AP ∪ AQ� sfinal

P‖Q = (sfinal
P , sfinal

Q ). The �nal state is the pair of the �nal states ofthe two automata.� TP‖Q = {((sP , sQ), a, (s′P , sQ)) | (sP , a, s′P ) ∈ TP}

∪ {((sP , sQ), a, (sP , s′Q)) | (sQ, a, s′Q) ∈ TQ}. Transitions in the parallelautomaton des
ribe the possible interleaving of the two automata.Figure 5.7 shows the parallel asyn
hronous 
omposition of two automata
P and Q. The �gure 
learly illustrates that by interleaving, any sequen
eof transitions is possible, as long as the sequen
e was possible in one of theoriginal automata.Interleaving of Atomi
 CallsWhile the approa
h of interleaving all states of two parallel automata re�e
tsthe semanti
s of Mona
o, it does not re�e
t the fa
t, that 
alls to atomi
routines 
an not be interrupted (
onfer to Se
tion 3.3.1). Therefore, if astate represents the state in an atomi
 routine 
all, then this state is notinterleaved.De�nition 5.9 We rede�ne the transition relation TP‖Q as follows:� TP‖Q = {((sP , sQ), a, (s′P , sQ)) | (sP , a, s′P ) ∈ TP ∧ ¬isAtomic(sQ)}

∪ {((sP , sQ), a, (sP , s′Q)) | (sQ, a, s′Q) ∈ TQ ∧ ¬isAtomic(sP )}.
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s1

s′1

s′′1

(r1, call)

(r1, ret)

s2

s′2

s′′2

(r2, call)

(r2, ret)

s1, s2

s′1, s2 s1, s
′
2

s′′1, s2 s′1, s
′
2 s1, s

′′
2

s′′1, s
′
2 s′1, s

′′
2

s′′1, s
′′
2

(r1, call)

(r1, call)

(r1, call)

(r2, call)

(r2, call)

(r2, call)

(r1, ret)

(r1, ret)

(r1, ret)

(r2, ret)

(r2, ret)

(r2, ret)(a) (b) (
)Figure 5.7: Implementation automaton for the Mona
o PARALLEL state-ment (
). The automaton shows the two parallel blo
ks P (a) and Q (b) beinginterleaved resulting in the automaton P ‖ Q.Figure 5.8 shows the interleaving of 
alls to the routines r1 and r2, wherethe 
all to r1 is atomi
.5.2.7 Asyn
hronous Event HandlingMona
o o�ers an asyn
hronous event handling me
hanism similar to the
try − catch 
onstru
t of C/C++ style languages. Mona
o's event handlingme
hanism allows one to guard the exe
ution of a 
ode blo
k by an arbitrary
ondition. The semanti
s is, that the exe
ution of the guarded blo
k is ter-minated if the 
ondition turns true. Exe
ution then 
ontinues in the handler
ode.Again, handling of events within a blo
k is a
hieved by �rst 
reating theimplementation automaton of the blo
k that is guarded by the handler (P )and the implementation automaton of the handler 
ode (Q). The next stepis to 
reate an event transition e from every state that is between a call anda ret-transition in the guarded blo
k to the �rst state of the handler 
ode. If
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s1, s2

s′1, s2 s1, s
′
2

s′′1, s2 s′1, s
′
2 s1, s

′′
2

s′′1, s
′
2 s′1, s

′′
2

s′′1, s
′′
2

(r1, call)

(r1, call)

(r1, call)

(r2, call)

(r2, call)

(r1, ret)

(r1, ret)

(r1, ret)

(r2, ret)

(r2, ret)Figure 5.8: Implementation automaton for the Mona
o PARALLEL state-ment where routine r1 is ATOMIC and thus isAtomic(s′1) holds. In 
ontrastto Figure 5.7 there is no interleaving of the state s′1.
BEGIN
subc.RoutineA(); // block guarded by the handler

ON subc.event
subc.RoutineB(); // handler code

END Listing 5.6: ON handlerthe handler automaton is an empty automaton, transitions are 
reated fromany state of the guarded blo
k to the �nal state. At the end of the handlerblo
k, exe
ution 
ontinues after the guarded blo
k.De�nition 5.10 Adding an event handler automaton Q for an event 
ondi-tion c to an implementation automaton P is de�ned as follows:� SP Q = SP ∪ SQ is the set of states.� sinit
P Q = sinit

P . The initial state of the guarded automaton remains is theinitial state of the resulting automaton.



5.2. FROM MONACO TO AN AUTOMATON 75� AP Q = AP ∪ AQ is the set of a
tions.� sfinal
P Q = sfinal

P . The �nal state of the guarded automaton remains.� TP Q = TP ∪ TQ ∪ {(s, τ, s
init
Q ) | ∃s′, r : (s′, (r, call), s) ∈ TP

∧ ¬isAtomic(s)} ∪ {(sfinal
Q , τ, sfinal

P )}. Event transitions from all 
all-sites of non-atomi
 routines to the initial state of the handler automa-ton are added.� CFCP Q = {(sinit
Q , {c})} ∪ {(s,¬c) | s ∈ SP ∧ s 6= sinit

P ∧ s 6= sfinal
P } isthe CFC fun
tion, where c is the 
ondition of the ON handler (if su
ha 
ondition exists). The 
ondition is true in the initial state of the onhandler and is false in the guarded blo
k.

CFC: ¬c sinit
Q CFC: cCFC: ¬c QCFC: ¬c sfinal

Q

(r1, call)

(r1, ret)

(r2, call)

(r2, ret)

τ

τ

τFigure 5.9: Implementation automaton for the Mona
o event handling 
on-stru
t.Figure 5.9 shows the implementation automata for a 
ode blo
k (show inFigure 5.10 and an event handler blo
k and how the handler blo
k is atta
hedto the guarded 
ode blo
k.Using the de�nitions above, we are able to 
reate implementation auto-mata for arbitrary Mona
o 
ode within a single routine. The automatonre�e
ts the sequen
es of routine 
alls, routine returns and events that arepossible in the respe
tive Mona
o 
ode.
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BEGIN
r1();
r2();

ON c
// Q

END Figure 5.10: Code for the event handling example in Figure 5.9.5.3 Automata Re�nementAutomata re�nement des
ribes the pro
ess of 
reating an implementationautomaton for a 
omponent. This is done, by 
reating implementation auto-mata for all routines of the 
omponent. These automata are then inlined intothe proto
ol automaton of the 
omponent, wherever a 
all to the respe
tiveroutine is found. Figure 5.1 gives an overview of this pro
ess. This way, theabstra
t des
ription of the parent 
omponent (C, the proto
ol automaton ofthe 
omponent interfa
e) is in
rementally re�ned to a more 
on
rete one (C ′,the implementation automaton of the 
omponent) [Sif01℄.De�nition 5.11 We 
all the repla
ement of 
alls within a proto
ol automa-ton PAC by the implementation automaton IAr that models the implementa-tion of the 
omponent's routine r the re�nement of PAC by IAr. We denotethis re�nement PAC ⋖ IAr. Let PAC = P , IAr = Q, and for ea
h 
all siteof routine r, de�ne the states callStarti, inCalli, callReti ∈ SP des
ribing a
all site i of routine r in P . The three states therefore are 
onne
ted with thetransitions (callStarti, (r, call), inCalli) and (inCalli, (r, ret), callReti).The automaton resulting from inlining a routine 
all at 
all site i , IAP⋖Qis formally de�ned by� SP⋖Q = (SP ∪ SQ) \ {inCalli}. The resulting set of states 
ombinesthe two automata's states without the state modeling the 
all exe
ution(inCalli).� sinit
P⋖Q = sinit

P . The initial state of P remains.� AP⋖Q = AP ∪AQ� sfinal
P⋖Q = sfinal

P . The �nal state of P remains.
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a

b
allStart sinit
Q

cinCall Q

d
allRet sfinal
Q

e

a

(r, call)

(r, ret)

b

τ

τ

Figure 5.11: The re�nement of the proto
ol automata P and with the im-plementation automaton Q of routine r inlines Q into P (IP⋖Q) and removesthe node of the original 
all.� TP⋖Q = (TP ∪ TQ) \{(s, a, s′) ∈ TP | s = inCalli ∨ s′ = inCalli}

∪{(callStarti, τ, s
init
Q ), (sfinal

Q , τ, callReti)}. For the 
all site i, τ transi-tions to the initial state of Q, as well as τ transitions from the �nalstates of Q to the the return of the 
all are added.Remark: At ea
h 
all site, a separate 
opy of the implementationautomaton of the routine is inlined, as we inline one 
all site afterthe other.In other words, the re�nement of a proto
ol automaton by the imple-mentation automaton of a routine inlines a 
opy of the implementation au-tomaton wherever there is a 
all to this routine in the proto
ol automaton.The resulting automaton is the basis for veri�
ation and semanti
 assistan
epresented in Chapter 6 and Chapter 7.Figure 5.11 shows the re�nement of the proto
ol automaton P by theimplementation automaton of the routine Q. The implementation automatonis 
alled Q, therefore the re�nement 
an be denoted as IP⋖Q.
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Chapter 6Veri�
ation Approa
h
This 
hapter presents the veri�
ation algorithm developed as a 
entral partof this thesis. The results of this algorithm are the basis for the end-userassistan
e tools presented in Chapter 7.Se
tion 6.1 gives an overview of the approa
h. The des
ription of theveri�
ation algorithm is split into 4 main parts. Se
tion 6.2 introdu
es thebasi
 veri�
ation algorithm that establishes a mapping between a 
omponentimplementation and the proto
ol 
ontra
ts of its sub
omponents. Se
tion 6.3presents the operators 
hosen for the knowledge update between states inthe implementation automaton. Se
tion 6.4 introdu
es 
onstraint 
he
king,while Se
tion 6.5 explains how unrea
hable states 
an be found. Finally, Se
-tion 6.6 presents how a 
omponent 
ontra
t is 
he
ked against the 
omponentimplementation.6.1 OverviewThe appli
ation of the veri�
ation algorithm is depi
ted in Figure 6.1. First,an automaton is 
reated (as outlined in Chapter 5) whi
h represents the im-plementation of aMona
o 
omponent with the 
ontrol �ow and the routine
alls to its sub
omponents (1). Then, a weak simulation relation is used toset up a mapping (3) between the states in the implementation automatonand the states in the proto
ol automata of the 
ontra
ts (2) of the sub-
omponents. In the same step, the states of the implementation automata79
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Contra
tsConstraints
Mona
oCode (1)Impl. Automaton

(2)Proto
ol Automata
(3)State Mapping (4)

AnnotatedImpl. Automaton
(5) Semanti
Errors(6) ProposalRepair(7) Visualization(8)

Figure 6.1: State mapping overview.are asso
iated with knowledge in the form of propositions derived from thepropositions in the proto
ol automata and the 
onditional statements in theimplementation. Finally, the state mapping and asso
iated knowledge is usedto verify 
onstraints.The annotated implementation automaton (4) is then used in variousend-user support systems as follows:� Reporting semanti
 errors (5) : The system gives feedba
k about vio-lations of 
ontra
ts and or 
onstraints. The feedba
k is shown at therespe
tive error positions in the editor.� Proposing valid 
alls (6): Based on the 
ontra
ts of the sub
omponentsand 
onstraints between 
omponents the system proposes valid routine
alls.� Proposing semanti
 program repair (7): Component violating 
ontra
tsor 
onstraints 
an be 
hanged su
h that the program 
omplies withthe 
ontra
ts and 
onstraints. This system gives proposals on whi
h
hanges are ne
essary to repair a 
omponent.� Visualizing 
omponent state (8): The system uses the state mappingresults at a spe
i�
 lo
ation in the 
ode to visualize the state of thesub
omponents at this exa
t lo
ation.Those end-user support systems will be subje
t of Chapter 7.



6.2. STATE MAPPING 816.2 State MappingThis se
tion introdu
es the state mapping algorithm for establishing a simula-tion relation between a 
omponent's implementation automaton and the pro-to
ol automata of its sub
omponents. Se
tion 6.2.1 introdu
es weak simula-tion relations. Se
tion 6.2.2 dis
usses the prin
ipal approa
h and Se
tion 6.2.3presents the state mapping algorithm. Finally, Se
tion 6.2.4 
on
ludes withan example.6.2.1 Weak SimulationA simulation between automata des
ribes that ea
h transition in one auto-maton has a 
ounterpart in the se
ond automaton. The automata are saidto have similar behavior (the se
ond automaton may have more behavior).A weak simulation [Bie08,Mil89℄ is a simulation disregarding unobservableinternal events (τ -transitions).De�nition 6.1 Let sP , sQ be states of the automata P and Q, then a weaksimulation relation . between these states is de�ned as follows: sP . sQ ⇔

∀a ∈ AP \ {τ}, s
′
P ∈ SP : (sP

τ∗a
−−→ s′P ⇒ ∃s

′
Q ∈ SQ : (sQ

τ∗a
−−→ s′Q ∧ s′P . s′Q))where the notation s

a
−→ s′ stands for ∃(s, a, s′) ∈ T and s

τ∗a
−−→ s′ stands for

s
τ
−→ s0

τ
−→ . . .

τ
−→ sn

a
−→ s′. An automaton Q weakly simulates an automaton

P i� the initial state of Q weakly simulates the initial state of P : sinit
P . sinit

Q .Weak simulation is often used to verify an implementation against itsspe
i�
ation. If implementation . specification the implementation's be-havior is a subset of the behavior allowed by the spe
i�
ation.6.2.2 Approa
hThe weak simulation des
ribed above 
an be used to verify the implemen-tation of a 
omponent against the sequen
ing 
onstraints spe
i�ed by theproto
ol automata of its sub
omponents. In order to be able to des
ribe theweak simulation between the implementation automaton and a proto
ol au-tomaton of a sub
omponent, we need to ignore all transitions resulting from
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c1.r1!

c1.r1?

c2.r4!

c2.r4?

c1.r2!

c1.r2?

τ

c1.r1!

c1.r1?

τ

τ

c1.r2!

c1.r2?

τ

IA IA/PAc1Figure 6.2: Statemapping proje
tion of the implementation automaton onthe proto
ol automaton of 
omponent c1 (PAc1).
alls to other sub
omponents. We simply repla
e these irrelevant transitionsby τ -transitions and 
all this a proje
tion of the implementation automatonon the proto
ol automaton of a spe
i�
 
omponent.De�nition 6.2 We de�ne the proje
tion of an implementation automaton
IA = 〈SIA, sinit

IA , AIA, sfinal
IA , TIA〉 on a proto
ol automaton PA = 〈SPA, sinit

PA ,

APA, Sfinal
PA , TPA〉 as an automaton IA/PA = 〈SIA, sinit

IA , APA, sfinal
IA , TIA/PA〉where TIA/PA = {(s, a, s′) ∈ TIA|a ∈ APA} ∪ {(s, τ, s

′)|(s, a, s′) ∈ TIA ∧ a /∈

APA}.This de�nition guarantees that all transitions in the resulting automatonare labeled with a
tions valid in the proto
ol automaton PA. The examplein Figure 6.2 shows how proje
tion repla
es transitions involving sub
ompo-nents other than PA by τ -transitions.In the state mapping algorithm we establish a weak simulation relationbetween the implementation automaton and ea
h of the sub
omponent proto-
ol automata. Therefore a 
omponent C 
omplies with the proto
ol automataof its sub
omponents i� ∀i : (IA/PAi) . PAi.De�nition 6.3 We de�ne the mapping M of states of the implementationautomaton to states of the sub
omponent proto
ol automata as M : SIA →
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r1!

r1?

r2!

r2?

r3!

r3?

c1.r1!

c1.r1?

τ

τ

c1.r2!

c1.r2?

τ

c1.r1!

c1.r1?

c2.r4!

c2.r4?

c1.r2!

c1.r2?

τ

τ

τ

c2.r4!

c2.r4?

τ

τ

τ

r4!

r4?

r5!

r5?

PAc1 IA/PAc1 IA IA/PAc2 PAc2Figure 6.3: State mapping results with proje
tion of the implementationautomaton IA on the proto
ol automata of 
omponent c1 (PAc1).
P(×SPAi

). ×SPAi
denotes the 
ross produ
t of the states of all sub
ompo-nents. Thus, this mapping relates a set of ve
tors of sub
omponent statesto a state of the implementation automaton. One su
h ve
tor des
ribes thestate of all sub
omponents. If multiple ve
tors are in the set, then the system
an be in di�erent states when exe
ution rea
hes the state implementationautomaton.

Let sIA be the 
urrent state in IA and sPAi
be the 
urrent state inthe sub
omponent proto
ol automaton PAi. Assume, a transition tIA =

(sIA, a, s′IA) ∈ TIA, a 6= τ exists in the implementation automaton. In orderto have a weak simulation relation, a similar transition possibly rea
hableby intermediate τ -transitions (sPAi
, a, s′PAi

) ∈ TPAi
needs to exist in the 
or-responding proto
ol automaton. If so, a mapping between s′IA and s′PA isestablished:M(s′IA) =M(s′IA) ∪ {(sPA1, . . . , s

′
PAi

, . . . , sPAn
)}.Figure 6.3 shows the result of the state mapping of an implementationautomaton and two proto
ol automata for the sub
omponents c1 and c2.For reasons of 
larity, the proje
tion automaton will be omitted from �gureshen
eforward.
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tion outlines the algorithm implementing the state mapping approa
hdes
ribed above. The algorithm applies depth-�rst sear
h (DFS ) to �nd 
on-tra
t violations and annotates the states of the implementation automatonwith mapping information.Instead of establishing the weak simulation for ea
h sub
omponent sepa-rately, the algorithm does the proje
tion on the �y. This allows the algorithmto establish the weak simulation in one depth-�rst sear
h traversal of the im-plementation automaton. Moreover, rather than using the appli
ation sta
kby re
ursion, this algorithm is implemented iteratively, thus maintaining aseparate sta
k of sear
h positions. A sear
h position holds a situation identi-�ed by a state in the implementation automaton and a 
orresponding statefor ea
h sub
omponent proto
ol automaton. The sear
h positions are 
on-ne
ted through referen
es to a prede
essor sear
h position, su
h that it ispossible to follow the exe
ution path leading to a 
ertain state.De�nition 6.4 A sear
h position holds information about a state s of theimplementation automaton as well as the mapped states of the sub
om-ponent proto
ol automata. A sear
h position therefore is a tuple SP =

〈s, (t1, . . . , tn)〉, where� s ∈ SIA is a state of the implementation automaton.� (t1, . . . , tn) de�nes the sub
omponent mapping, the a
tive states in thesub
omponent proto
ol automata. For ea
h sub
omponent there is onestate in whi
h this 
omponent is in this situation (ti ∈ SPAi
).A pseudo-
ode version of the algorithm is shown in Figure 6.4. The algo-rithm starts by assuming a mapping between the initial state of the imple-mentation automaton sinit and the initial states of the sub
omponent pro-to
ol automata tinit

i (line 1). While the sear
h sta
k is not empty, the topsear
h position is removed from the sta
k (line 3) and the (
all- and return-)transitions leaving the implementation state s of the sear
h position are veri-�ed to exist in the 
orresponding sub
omponent proto
ol automaton. If su
ha transition exists, the mapping between the su

essor in IA and the su

es-sor in the sub
omponent proto
ol automata is established (lines 12 and 19).
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omponent proto
ol automataResult: annotated implementation automaton, list of violations
push(sinit, (tinit

1 , ..., tinit
n ))1 while sear
h positions on sear
h sta
k do2

〈s, (t1, . . . , tn)〉 := pop()3 forea
h a su
h that ∃s′ : (s, a, s′) ∈ TIA do4 if a 6= τ ∧ ¬∃i : (ti, τ
∗a, t′) ∈ TPAi

then5 violation dete
ted at state s6 end7 forea
h s′ su
h that (s, a, s′) ∈ TIA do8 if a = τ then9 if (t1, . . . , tn) /∈M(s′) then10
push(s′, (t1, . . . , tn))11
M(s′) :=M(s′) ∪ {(t1, . . . , tn)}12 end13 
ontinue14 end15 forea
h t′i su
h that (ti, τ

∗a, t′i) ∈ TPAi
do16 if (t1, . . . , t

′
i, . . . , tn) /∈M(s′) then17

push(s′, (t1, . . . , t
′
i, . . . , tn))18

M(s′) :=M(s′) ∪ {(t1, . . . , t
′
i, . . . , tn)}19 end20 end21 end22 end23 end24 Figure 6.4: DFS veri�
ation algorithm.If the same mapping did not already exist, a new sear
h position with thenew su

essor of the transition in the implementation automaton and thenew state mapping is pushed on the sear
h sta
k (lines 11 and 18). If no su
htransition exists, a violation has been found (line 5). These steps are repeateduntil a mapping for ea
h state has been found, or a violation is dete
ted.State mapping violations are due to invalid transitions in the implemen-tation automaton. We 
an re
onstru
t a path leading to this violation usingthe sear
h position 
hain. Ea
h sear
h position links to the sear
h position
ausing this situation. Thus, the sear
h positions 
an be seen as path lead-
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Figure 6.5: Driller and 
ooler 
omponent.
SUBCOMPONENTS
c : ICooler;
d : IDriller;

ROUTINE drill()
BEGIN
c.start();
d.start();
WAIT d.rpmReached();
d.down();
d.up();

END Listing 6.1: Partial implementation of the driller 
omponent.ing from the initial state of the implementation automaton to the 
ontra
tviolation.6.2.4 ExampleConsider a driller ma
hine like the one shown in Figure 6.5. The ma
hine
onsists of two sub
omponents, a driller and a 
ooler. Contra
ts exist forthe interfa
es of the sub
omponents IDriller and ICooler, des
ribingallowable usage patterns of the 
omponents. The driller ma
hine 
ould useits sub
omponents like shown in Listing 6.1.We 
an now apply the state mapping algorithm to the implementationautomaton of the driller ma
hine and the proto
ol automata of its sub
om-ponents. The result of the state mapping algorithm is depi
ted in Figure 6.6.
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IDrillerdown!up?

Implementa
tion

CF C : d.rpmReached()

ICooler
start! start? stop! stop?

down?up!

start! start? stop!

stop?

c.start! c.start? d.start! d.start? d.down! d.down? d.up! d.up?

Figure 6.6: Result of the state mapping algorithm of the driller 
omponent.The upper part shows the proto
ol automaton for the IDriller interfa
e,the lower part shows the proto
ol automaton for the ICooler interfa
e.In the 
enter, the implementation automaton for the 
ode in Listing 6.1 isshown. Dotted lines highlight the state mapping relationM.6.3 Knowledge UpdateWhile the algorithm des
ribed in Figure 6.4 establishes a weak simulationrelation, the propagation of knowledge in the implementation automatonhas been omitted so far. This se
tion will detail on situational knowledge,knowledge update and retra
tion, and we will present an extended statemapping algorithm propagating knowledge.Situational knowledge is 
reated from knowledge obtained from the pro-to
ol automata (see Pre, Post, and Initial fun
tions in Se
tion 4.3) and theimplementation automaton (see CFC fun
tion in Se
tion 5.1). Furthermore,we 
an use the fun
tion Retract from proto
ol automata to remove invalidknowledge. We use these propositions to annotate ea
h rea
hable state of theimplementation automaton with situational knowledge (similar to [Rei01℄).The term situational knowledge refers to the fa
t, that a state in the imple-
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hed through di�erent paths in the imple-mentation automaton, thus resulting in di�erent knowledge and a di�erentmapping of sub
omponent states.When a transition is taken, the situational knowledge of the sour
e state istransferred to the target state of the transition. It is then updated with newinformation (from proto
ol automata) while keeping the situational know-ledge 
onsistent (i.e. the 
onjun
tion of all terms in the knowledge base mustbe satis�able). We have adopted te
hniques introdu
ed in arti�
ial intel-ligen
e 
alled belief update [KM91, HR99℄ and employed the SMT solverYi
es [DdM06℄ to add and remove new information without introdu
ing in-
onsisten
ies.6.3.1 Knowledge Change OperatorsWe introdu
e a knowledge update operator (
f. Se
tion 2.3.3) 
onsistent withWinslett's standard semanti
s [Win90℄ (
f. Se
tion 2.3.4). In 
ontrast to beliefrevision, a belief update operation 
hanges a knowledge base due to a 
hangein the real world. The operation therefore may remove existing informationfrom the knowledge base in order to keep the knowledge base 
onsistent.De�nition 6.5 Let K be the knowledge base 
onsisting of a set of logi
alpropositions k ∈ K and c a logi
al 
onjun
tion des
ribing new informationabout the world. Inv denotes the 
onjun
tion of invariant propositions. Theknowledge update operator ⋄ is then de�ned as follows:
K ⋄ c = {k ∈ K | ¬sameSym(k, c) ∧ sat(k ∧ c ∧ Inv)} ∪ c.The predi
ate sameSym is true, i� the two propositions have at leastone atom (symbol) in 
ommon. The predi
ate sat proves satis�ability of aproposition and is 
omputed by an SMT solver.Remark: We have 
hosen the SMT solver Yi
es [DdM06℄ as ane�
ient de
ision pro
edure for satis�ability of arbitrary formulas.Additionally it provides a simple input language whi
h 
an beused in intera
tive mode.Figure 6.7 shows the algorithm for the knowledge update in pseudo 
ode.Ea
h 
ondition in the knowledge base is tested whether its symbols interse
t
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ontained in the new knowledge (line 3). If so, the 
ondition isremoved from the resulting knowledge base. Otherwise, the 
ondition is testedwhether it 
ontradi
ts the new information and the invariants (line 5). If so,the 
ondition is also removed from the resulting knowledge base. Finally thenew information is added to the knowledge base (line 9).Input: existing knowledge K, new information c, invariants InvResult: new knowledge base K ′

K ′ := K1 forea
h k ∈ K do2 if sameSym(k, c) then3
K ′ := K ′ \ {k}4 elsif ¬sat(k ∧ c ∧ Inv)) then5
K ′ := K ′ \ {k}6 endif7 end8

K ′ := K ′ ∪ {c }9 Figure 6.7: Pseudo 
ode de�ning the knowledge update operator.Similarly, an operator for information retra
tion 
an be de�ned. The se-manti
s of retra
tion is that retra
ted knowledge 
an not be guaranteed tohold any longer. It therefore needs to be removed from the knowledge base.De�nition 6.6 Let K be a knowledge base as above, and f a symbol to beretra
ted. The knowledge retra
tion operator � is then de�ned as follows:
K�f = {k ∈ K | ¬sameSym(k, f)}.Remark: Knowledge retra
tion di�ers from adding 
ontradi
tinginformation, in that it does not generate additional information,but stri
tly removes any knowledge about 
ertain symbols.These knowledge operators are used in the state mapping algorithm togenerate knowledge while establishing the weak simulation relation. The re-sult of this state mapping algorithm in
luding knowledge update is an an-notated implementation automaton, where ea
h rea
hable state is annotatedwith a list of situations. Ea
h situation 
ontains the sub
omponent proto
olautomata mapping as well as a set of propositions known to be true in thissituation. Se
tion 6.3.3 gives a detailed de�nition of situations.



90 CHAPTER 6. VERIFICATION APPROACH6.3.2 ExampleIn the following examples di�erent 
ases for knowledge update in the statemapping algorithm are illustrated.Adding Knowledge Based on Proto
ol AutomataAssume we have a sub
omponent 
ooler of interfa
e ICooler with the pro-to
ol automaton as de�ned in Figure 6.8, left 
olumn. The sub
omponentis used as shown in Listing 6.2, the 
orresponding implementation automa-ton is depi
ted in Figure 6.8, right 
olumn. Dotted lines represent the statemapping relation.
SUBCOMPONENTS

ICooler c;

IDriller d;

ROUTINE main()

BEGIN

c.start();

...

ENDListing 6.2: Example 
ode generating knowledge from a proto
ol automa-ton.The �rst part of Figure 6.8 shows the �rst mapping between the pro-to
ol automaton and the implementation automaton: the initial states aremapped and the mapping is annotated with the initial knowledge K =

{¬c.isCooling,¬d.isStarted}. Next, the transition c.start! in the implemen-tation automaton is 
hosen as the only transition from the 
urrent (initial)state in the implementation automaton. The same transition (though with-out the sub
omponent pre�x c.) exists in the proto
ol automaton for the
ICooler sub
omponent c. Therefore, a mapping between these two su

es-sor states is established, the knowledge is not yet 
hanged (sin
e post
on-dition information is added to the knowledge as soon as the state holdingthe post
ondition is left). The knowledge asso
iated with this new mappingtherefore remains K = {¬c.isCooling,¬d.isStarted}.Finally, the next transition c.start? is taken and its 
ounterpart in theproto
ol automaton is followed. The post
ondition of the state in the proto
ol
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start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

c.start!

c.start?

K = {¬c.isCooling,¬d.isStarted}

start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

c.start!

c.start?

K = {¬c.isCooling,¬d.isStarted}

K = {¬c.isCooling,¬d.isStarted}

start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

c.start!

c.start?

K = {¬c.isCooling,¬d.isStarted}

K = {¬c.isCooling,¬d.isStarted}

K = {c.isCooling,¬d.isStarted}Figure 6.8: Veri�
ation pro
ess: state mapping and knowledge generationfrom proto
ol automaton.automaton is used to update the 
urrent knowledge. Thereby, the proposition
¬c.isCooling is removed be
ause it shares symbol isCooling with the newproposition c.isCooling. Finally the new proposition is added to the know-ledge base giving K = {c.isCooling,¬d.isStarted}. Repeated exe
ution ofthe 
ode 
an lead to new mappings of implementation states to the samestates in the proto
ol automaton (even with di�erent knowledge). Similarly,one state in the implementation automaton 
an be mapped to multiple statesin the proto
ol automaton (possibly with di�erent knowledge per mapping).Adding Knowledge Based on WAIT / IFThis example illustrates how information from the implementation automa-ton is used in the veri�
ation pro
ess and how pre
onditions are veri�ed.Figure 6.9 shows the implementation automaton for the 
ode snippet in List-ing 6.3, where the system waits for the driller 
omponent to have rea
hedfull speed, before the driller lowers.
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BEGIN

...

WAIT d.rpmReached();

d.down();

...

ENDListing 6.3: Example 
ode generating knowledge from the implementationautomaton.Figure 6.9 shows the proto
ol automaton of the ICooler sub
ompo-nent on the left, the proto
ol automaton of the IDriller sub
ompo-nent on the right, and the implementation automaton for the 
ode snip-pet in the 
enter. Assume, the knowledge at the state of the CFC 
on-dition is K = {c.isStarted, d.isStarted}. Before the transition d.down! istaken in the implementation automaton and the proto
ol automaton for the
IDriller interfa
e of the sub
omponent d, the knowledge is immediatelyupdated with the CFC 
ondition. The temporary knowledge therefore is
K = {c.isStarted, d.isStarted, d.rpmReached}.Next, the pre
ondition of the su

essor state in the proto
ol automatonof IDriller is veri�ed. Sin
e K ∧¬Pre is not satis�able, the pre
ondition
d.rpmReached is satis�ed, the transition d.down! is taken, and the mappingbetween the two su

essor nodes is established. The knowledge in the se
ondimplementation state is then K = {c.isStarted, d.isStarted}. It la
ks thefun
tion symbol d.rpmReached, be
ause this knowledge 
an no longer beguaranteed as it does not stem from a 
ontra
t guarantee, but from a WAITstatement, and the system may have 
hanged due to the routine 
all.Remark: The SMT solver 
an only show satis�ability or un-satis�ability of formulas. Therefore, a pre
ondition is ful�lled, ifits negation is unsatis�able under a 
ertain knowledge. It doesnot su�
e to show that the pre
ondition and the knowledge aresatis�able.Retra
ted Knowledge Based on Proto
ol AutomataThis example shows how retra
tion of information from existing knowledge
an be used. Figure 6.10 shows the se
tion of the implementation automaton
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start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

CF C : d.rpmReached

d.down!

Post : isDrilling()

Pre : rpmReached()

Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?

start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

CF C : d.rpmReached

d.down!

Post : isDrilling()

Pre : rpmReached()

Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?

Figure 6.9: Veri�
ation pro
ess: state mapping and knowledge generationfrom implementation proto
ol.for the 
ode snippet in Listing 6.4, where the system starts the 
lose move-ment of a 
ylinder, waits for the 
ylinder to be 
losed, and then stops themovement.The proto
ol automaton for the interfa
e ICylinder of the 
ylinder sub-
omponent states, that as soon as a movement is started, no 
on
lusion aboutthe state of the sub
omponent 
an be drawn (Retract : isOpen, isClosed).Assume, we have the knowledge K = {cyl.isOpen} when the veri�
ationpro
ess arrives at the �rst state of the implementation automaton shown inFigure 6.10.
BEGIN

...

cyl.startClose();

WAIT cyl.isClosed();

cyl.stop();

...

END Listing 6.4: Example 
ode showing retra
tion of knowledge.When the transition cyl.startClose! is taken, it leads to a state in theproto
ol automaton whi
h is annotated with a set of symbols to retra
t. Allpropositions involving retra
ted symbols are removed from the knowledge.In the example, the proposition cyl.isOpen is removed from the knowledgeand an empty knowledge remains (K = {}). In the next step, temporarily
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Retract : isOpen, isClosedRetract : isOpen, isClosed

startOpen! startClose!

startOpen? startClose?
stop!

stop?startOpen! startClose!

CF C :

cyl.isClosed()

cyl.startClose!

cyl.startClose?

cyl.stop!

cyl.stop?

K = {cyl.isOpen}

Retract : isOpen, isClosedRetract : isOpen, isClosed

startOpen! startClose!

startOpen? startClose?
stop!

stop?startOpen! startClose!

CF C :

cyl.isClosed()

cyl.startClose!

cyl.startClose?

cyl.stop!

cyl.stop?

K = {cyl.isOpen}

K = {}

Retract : isOpen, isClosedRetract : isOpen, isClosed

startOpen! startClose!

startOpen? startClose?
stop!

stop?startOpen! startClose!

CF C :

cyl.isClosed()

cyl.startClose!

cyl.startClose?

cyl.stop!

cyl.stop?

K = {cyl.isOpen}

K = {}

K = {}

Figure 6.10: Veri�
ation pro
ess: state mapping and knowledge retra
tion.
new knowledge is added from the CFC 
ondition of the implementation. Thetemporary knowledge thus is K = {cyl.isClosed}. This knowledge stemmingfrom the CFC 
ondition would only be used if there were a pre
ondition inthe proto
ol automaton. Sin
e there is no pre
ondition, the CFC 
onditionis not used and the empty knowledge K = {} remains.
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Post : isClosed()Post : isOpen()

open!

open? close!

close?

v.open!

v.open?

v.close!

v.close?

K = {v.isClosed}

K = {v.isClosed}

K = {v.isOpen}

K = {v.isOpen}

K = {v.isOpen}Figure 6.11: Veri�
ation pro
ess: knowledge update with invariants.Knowledge Update with InvariantsThis example shows how invariants in�uen
e the result of knowledge update.Assume, we have a valve sub
omponent whi
h 
an be opened and 
losed(atomi
 routines open() and close()). The fun
tions de
lared in the interfa
eof the valve sub
omponent are isOpen and isClosed whi
h 
an never be truesimultaneously. We des
ribe this dependen
e using the invariant ¬(isOpen∧

isClosed)(the pre
eding ¬ 
an be read as never).Listing 6.5 shows an example 
ode whi
h uses the valve sub
omponent.The 
orresponding implementation automaton is shown in Figure 6.11. Theinteresting part of the knowledge update is in the third state of the im-plementation automaton. The knowledge from the previous state is K =

{v.isClosed} and the new information from the post
ondition is v.isOpen.The knowledge update step generates the �nal knowledge K = {v.isOpen}by removing v.isClosed be
ause v.isClosed∧v.isOpen∧¬(isOpen∧isClosed)is not satis�able.
BEGIN

...

v.open();

WAIT 1000;

v.close();

...

END Listing 6.5: Example 
ode for knowledge update with invariants.



96 CHAPTER 6. VERIFICATION APPROACH6.3.3 AlgorithmFigure 6.12 gives the full pseudo 
ode of the state mapping algorithm, in-
luding knowledge update operations. The following adaptations need to bemade to the state mapping algorithm:� The mapping is 
hanged to map sets of situations to implementationstates. A situation is a tuple Situation = 〈(t1, . . . , tn), K〉. The newmapping therefore is M : SIA → P(Situation). New situations areadded to the mapping as they o

ur (lines 14 and 25).� A new element K representing the set of propositions on sub
ompo-nents valid in the implementation automaton is added to the sear
hposition. Therefore, it is now de�ned as SP = 〈s, (t1, . . . , tn), K〉.� Unsatis�ability of 
ontrol �ow 
onditions need to be 
he
ked (line 9).� New information from 
ontrol �ow 
onditions needs to be added to theknowledge (line 10).� Knowledge needs to be retra
ted, if spe
i�ed in the proto
ol automata(line 8).� Knowledge from WAIT statements needs to be retra
ted as soon as itis not valid any more (line 21). This is the 
ase, as soon as the nextnon-atomi
 routine is 
alled after the WAIT statement.� New information from the proto
ol automata needs to be added to theknowledge (line 19).� Constraints need to be 
he
ked whenever a new mapping is generated(line 22). This is the subje
t of the next se
tion.6.4 Constraint Che
kingConstraints are 
he
ked in the state propagation algorithm in every situationen
ountered (line 22). A 
onstraint is satis�ed, i� the 
urrent knowledge
ontradi
ts the negated 
onstraints, i.e., if there is no possibility that the
urrent knowledge and an invalid state (as des
ribed by 
onstraints) 
oin
ide.
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Input: implementation automaton, sub
omponent proto
ol automataResult: annotated implementation automaton, list of violations
push(sinit, (tinit

1 , ..., tinit
n ),

⋃
i Initial(PAi))1 while sear
h positions on sear
h sta
k do2

〈s, (t1, . . . , tn), K〉 := pop()3 forea
h a su
h that ∃s′ : (s, a, s′) ∈ TIA do4 if a 6= τ ∧ ¬∃i : (ti, τ
∗a, t′) ∈ TPAi

then violation dete
ted5 forea
h s′ su
h that (s, a, s′) ∈ TIA do6 let PAi su
h that ∃t′ : (ti, τ
∗a, t′) ∈ TPAi

7
K ′ := K�Retract(ti)8 if ¬sat(K ′ ∧ CFC(s′)) then 
ontinue with line 69
K ′ := K ′ ⋄ CFC (s)10 if a = τ then11 if mapping is new then12

push(s′, (t1, . . . , tn), K
′)13

M(s′) :=M(s′) ∪ {((t1, . . . , tn), K ′)}14 end15 
ontinue with line 616 end17 forea
h t′i su
h that (ti, τ
∗a, t′i) ∈ TPAi

do18
K ′′ := K ′ ⋄ Post(ti)19 if sat(K ′′ ∧ Inv ∧ ¬Pre(t′i)) then violation dete
ted20
K ′′ := K ′′�invalid WAIT knowledge21 if sat(K ′′ ∧ Inv ∧ ¬Constr) then violation dete
ted22 if mapping is new then23

push(s′, (t1, . . . , t
′
i, . . . , tn), K ′′)24

M(s′) :=M(s′) ∪ {((t1, . . . , t
′
i, . . . , tn), K ′′)}25 end26 end27 end28 end29 end30 Figure 6.12: DFS veri�
ation algorithm with knowledge update.
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CONSTRAINT (ICooler cooler, IDriller driller)

[NOT (driller.isStarted() AND NOT cooler.isCooling())]Listing 6.6: Driller/Cooler 
onstraint.1 ( define 
oo l e r_ i sCoo l ing : : bool )2 ( define d r i l l e r_ i s S t a r t e d : : bool )3 ( define 
 on s t r a i n t : : bool (not (and d r i l l e r_ i s S t a r t e d (not←֓
oo l e r_ i sCoo l ing ) ) ) )4 ( assert 
oo l e r_ i sCoo l ing )5 ( assert d r i l l e r_ i s S t a r t e d )6 ( assert (not 
 on s t r a i n t ) )7 (
he
k ) Listing 6.7: Yi
es input for 
he
king a 
onstraint.De�nition 6.7 More formally, a 
onstraint is violated, i�
sat((¬Constr) ∧ invariants ∧ knowledge)In order to solve this SAT problem, again the SMT solver Yi
es [DdM06℄is used. The satis�ability problem is translated into the input language ofthe SMT solver, whi
h in turn returns either satis�able or unsatis�able.Assume we have to 
he
k the 
onstraint in Listing 6.6. The situationalknowledge is cooler.isCooling()∧driller.isStarted() and there are no invari-ants. The SAT problem for 
he
king the 
onstraint reads as follows:

sat(¬¬(driller.isStarted() ∧¬cooler.isCooling()) ∧ cooler.isCooling() ∧

driller.isStarted())The input for Yi
es for this satis�ability problem is listed in Listing 6.7.Lines 1 and 2 de
lare the two boolean symbols used in the 
onstraint andthe knowledge. Line 3 de�nes the 
onstraint and lines 4 and 5 assert theknowledge. Line 6 asserts that the 
onstraint is violated, whi
h needs to beunsatis�able. The last line exe
utes the 
he
k 
ommand whi
h 
he
ks theprevious 
ommands for satis�ability and either returns sat or unsat.The given SMT problem is unsatis�able, sin
e ¬cooler.isCooling() and
cooler.isCooling() 
an not hold simultaneously. Hen
e, the 
he
k 
ommandreturns unsat and the 
onstraint is not violated. If the SMT solver reportedsatis�ability of the problem, we would have found an instan
e of 
onstraintviolation.
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hability AnalysisRea
hability analysis aims at �nding 
ode whi
h is unrea
hable and thus iseither super�uous or �awed. Unrea
hable 
ode is also often 
alled dead 
ode.It seems natural to extend stati
 analysis to �nd su
h 
ode, sin
e the statemapping algorithm already does most of the stati
 analysis needed. Whatremains to do for a rea
hability analysis is to analyze the results of the statemapping algorithm.The analysis is done by 
he
king the states in the annotated implemen-tation automaton having a 
ontrol �ow 
ondition (from IF or WHILE state-ments). Ea
h su
h state must have at least one situation in whi
h the 
ontrol�ow 
ondition is established, in order to be exe
utable. If there is no situationin whi
h the 
ondition holds, an unrea
hable state has been found.1 BEGIN2 cooler.start()3 driller.start();4 WAIT driller.rpmReached();56 IF NOT cooler.isStarted() THEN7 BEGIN // unreachable code block8 cooler.start();9 END1011 driller.down();12 driller.up();13 ...14 END Listing 6.8: Unrea
hable 
ode.Listing 6.8 shows a Mona
o 
ode blo
k 
ontaining unrea
hable 
ode.The unrea
hable 
ode is the blo
k starting at line 7. It is 
aused by thepre
eding IF statement whi
h has a 
ondition that will never be true dueto the post
ondition knowledge gathered by the 
all to cooler.start()in line 2. The result of the veri�
ation and rea
hability analysis is shown inFigure 6.13.
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c.start!

c.start?

d.start!

d.start?

CF C :

d.rpmReached()

τ

d.down!

d.down?

CF C :
¬c.isStarted()

c.start!

c.start?


.isStarted() d.isStarted() d.rpmRea
hed
()
d.isDrilling()implementatio

n
automaton

•

•

• •

• • •

• •

• • •

• • •

IF 
ondition
ontradi
ts theknowledge.
Figure 6.13: Unrea
hable 
ode due to unsatis�able IF 
ondition.
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king Component Contra
tsRe
all from Se
tion 3.2.3 that the 
omponent stru
ture forms a stri
t hier-ar
hy. The veri�
ation for one 
omponent relies on the 
ontra
ts of its sub-
omponents and assumes that its routines are 
alled as required by its own
ontra
t. This kind of reasoning is referred to as assume-guarantee reason-ing [HMP01℄. To be sound, the 
omponent implementation has to guaranteethat it ful�lls the post
onditions spe
i�ed in its 
ontra
t. This will be outlinedin the following.6.6.1 Che
king Component Post
onditionsAs des
ribed above, a 
omponent has to guarantee, that it ful�lls the post-
onditions spe
i�ed in its 
ontra
t. We 
an 
he
k this by adding the post-
onditions of the 
ontra
t of a 
omponent to the implementation automaton,when the 
omponent routines are inlined (see Se
tion 5.3).The only problem is, that the post
onditions of the 
omponent are statedin terms of fun
tion symbols of the 
omponent itself, while the 
onditionsused in the knowledge update pro
edures are stated in terms of the fun
tionsymbols of the sub
omponents. This 
an be solved by analyzing the 
odeof the fun
tions used in these post
onditions. These fun
tions essentially re-turn aggregated states of their sub
omponents. Thus, they 
onsist of a single
RETURN statement with a 
ondition 
omposed of sub
omponent fun
tionsymbols. This exa
t 
ondition is then used within the new post
ondition.Figure 6.14 gives an overview of the pro
ess: the post
ondition x of theroutine 
all a (left) is added to the implementation automaton of the routine
a(). Sin
e the symbol x is a fun
tion of the 
omponent and not of one of itssub
omponents, the 
ontents of the fun
tion x are used. Let's assume the 
odeof the fun
tion x is RETURN s1.y() OR s3.z(). The post
ondition isthen s1.y∨s3.z and added to the last state of the implementation automaton(right).In the state mapping algorithm the a
tual 
he
k for 
omplian
e with thepost
onditions of the 
omponent's 
ontra
t has to be done after line 19 (seealgorithm in Figure 6.15). The 
he
k veri�es that the knowledge (K ′′) impliesthe parent post
ondition. If this 
he
k fails, the 
omponent does not ful�ll
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a!

a?

Post : x()Proto
ol AutomatonIComponent
s1.r1! s1.r1?

s3.r3!
s2.r2!

s2.r2?
s3.r3?ImplementationAutomaton for a()

s1.r1! s1.r1?

s3.r3!
s2.r2!

s2.r2?
s3.r3?ImplementationAutomaton for a()Post : s1.y() ∨ s3.z()Figure 6.14: Post
onditions of the 
omponent's 
ontra
t are transferredto their implementation automaton. The post
ondition is thereby stated interms of sub
omponent fun
tion symbols.its 
ontra
t.forea
h t′i su
h that (ti, τ

∗a, t′i) ∈ TPAi
do20

K ′′ := K ′ ⋄ Post(ti)21 if sat(K ′′ ∧ Inv ∧ ¬Post(s′)) then violation dete
ted22 if sat(K ′′ ∧ Inv ∧ ¬Pre(t′i)) then violation dete
ted23
K ′′ := K ′′�invalid WAIT knowledge24 if sat(K ′′ ∧ Inv ∧ ¬Constr) then violation dete
ted25 if mapping is new then26

push(s′, (t1, . . . , t
′
i, . . . , tn), K ′′)27

M(s′) =M(s′) ∪ {((t1, . . . , t
′
i, . . . , tn), K ′′)}28 end29 end30 Figure 6.15: Part of the DFS veri�
ation algorithm. Line 22 
he
ks whetherthe post
ondition of the 
omponent's 
ontra
t is ful�lled.

6.6.2 Che
king Un
hanged State PropertiesThe 
he
k des
ribed in Se
tion 6.6.1 above guarantees that post
onditionsare ful�lled. In addition to post
onditions, there is a se
ond assumption thatwe use when updating knowledge in the state mapping algorithm: knowledgegained from post
onditions remains true, until it is invalidated (by anotherpost
ondition, or by knowledge retra
tion).
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an verify this assumption by 
he
king that the knowledge at 
om-ponent routine 
alls only 
hange state properties of the 
omponent, if these
hanges are spe
i�ed in the routine's post
ondition.
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Chapter 7Semanti
 Assistan
e
”Syntax is what you see,

semantics is what you

have to find out.”- AnonymousThis 
hapter introdu
es te
hniques to assist end users in programming.These te
hniques exploit the veri�
ation approa
h as presented in Chapter 6.Se
tion 7.1 presents an algorithm for sear
hing for proposals that suggest howa Mona
o program 
an be legally extended or modi�ed at a spe
i�
 lo
a-tion. Se
tion 7.1.2 shows how these proposals 
an be used to build intera
tiveend-user support tools. The same algorithm forms the basis for the seman-ti
 program repair approa
h (Se
tion 7.2), whi
h �xes 
omponents that areinvalid with respe
t to their 
ontra
ts. The last se
tion of this 
hapter (Se
-tion 7.3) presents a program visualization tool that 
an show and animatethe state of 
omponents during programming.The term Semanti
 Assistan
e is derived from the E
lipse term 
ontentassist, a fa
ility that provides programmers with proposals about what wordsthe user 
ould type in the 
urrent 
ontext (
f. Se
tion 2.1). Our approa
h isto use synta
ti
 information plus semanti
 knowledge (
ontra
ts) to give 
or-re
t proposals (with respe
t to the 
ontra
ts) instead of only taking synta
ti
information into 
onsideration. As introdu
ed in Se
tion 6.1, Semanti
 As-sistan
e tools are based on information gathered from 
he
king 
omponentsagainst 
ontra
ts and 
onstraints of their sub
omponents. That means that105



106 CHAPTER 7. SEMANTIC ASSISTANCEit relies on the state mapping and knowledge dedu
tion pro
ess as presentedin Chapter 6. The resulting annotated implementation automaton is used bythe tools presented in this 
hapter to give proposals to the end user, whi
hare not only synta
ti
ally 
orre
t, but also semanti
ally valid with respe
t tothe semanti
s given by proto
ol 
ontra
ts and 
onstraints.7.1 Sear
h for ProposalsThis se
tion introdu
es a sear
h pro
edure for �nding valid routine 
alls fora 
ertain position in the sour
e 
ode. The pro
edure �nds those states of theimplementation automaton that 
orrespond to the given position in the 
ode.These states are then used to �nd a set of valid routine 
alls with whi
h the
all sequen
e up to this point 
an be 
ontinued.De�nition 7.1 Let's assume, that the state s is the implementation state
orresponding to a spe
i�
 lo
ation in the sour
e 
ode, where we want to
ompute whi
h routine 
alls are allowed to o

ur next. We de�ne the set ofvalid routine 
alls as:
V C = {r | ∃i∀〈(sPA1 , . . . , sPAn

), K〉 ∈ M(s) : ∃s′ : (sPAi
, τ ∗(r, call), s′) ∈

TPAi
∧ ¬sat(((K�Retract(sPAi

)) ⋄ Post(s′)) ∧ Inv ∧ ¬Constr)

∧ ¬sat(((K�Retract(sPAi
)) ⋄ Post(s′)) ∧ Inv ∧ ¬Pre(s′))}.This means, that all routines are valid routines, where1. a proto
ol 
ontra
t PAi allows us to 
all the routine in any situation

〈(sPA1, . . . , sPAn
), K〉 asso
iated with the given implementation state

s:
∃i∀〈(sPA1 , . . . , sPAn

), K〉 ∈ M(s) : ∃s′ : (sPAi
, τ ∗(r, call), s′) ∈ TPAi(for an example see Se
tion 7.1.1)2. the 
all does not violate any 
onstraints ¬sat(K ′ ∧ Inv ∧ ¬Constr)where K ′ is the updated knowledge ((K ′�Retract(sPAi

)) ⋄ Post(s′))3. the 
all does not violate a pre
ondition ¬sat(K ′ ∧ Inv ∧ ¬Pre(s′)).In essen
e, it 
an be regarded as simulating one step in the state mappingalgorithm starting at the mapping of the implementation state s. Note, that
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onsider further steps, su
h that it does not re
ognize errors whi
happear subsequently as a result of a proposed routine 
all.If more than one state 
orresponds to the 
ode position for whi
h the setof valid routine 
alls is to be 
al
ulated, the interse
tion of the valid routine
alls of the respe
tive states is the result. We need to use the interse
tion,be
ause valid routine 
alls should be valid in any possible exe
ution pathleading to the 
ode position.
7.1.1 ExamplesIn the following, examples will illustrate the sear
h for proposals in varioussituations.Valid Routine Calls at a Single StateFigure 7.1 shows an example of the appli
ation of the sear
h for valid routine
alls after the 
ode in Listing 7.1. In this example, we want to �nd out, howwe 
an pro
eed at the state s in the implementation automaton (
enter). Theproto
ol automata of the sub
omponents cooler and driller are depi
ted tothe left and the right, respe
tively. The dotted lines show the state mappingrelations between the states of the implementation automaton and the statesof the sub
omponent proto
ol automata.Valid routine 
alls at the implementation automaton state s are the rou-tine symbols at 
all-transitions leaving the proto
ol automata states mappedto s. In our example, the routines c.stop and d.start would be valid. Thesetransitions are marked bold in Figure 7.1.
BEGIN

c.start();

<>

END Listing 7.1: Example 
ode for valid routine 
alls.
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start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

s

c.start!

c.start?

Post : isDrilling()

Pre : rpmReached()

Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?

Figure 7.1: Finding valid routine 
alls.
BEGIN
c.start();
d.start();
IF f.pieceAtDriller() THEN BEGIN

WAIT d.rpmReached();
d.down();

END
<>

END Listing 7.2: Example 
ode for valid routine 
alls.Valid Routine Calls with Multiple SituationsWhen multiple di�erent situations 
an be found for a 
ertain position inthe 
ode, we have to use the interse
tion of the valid routine 
alls at ea
hsituation. Listing 7.2 shows a 
ode sample where di�erent situations o

ur atthe 
ursor position. In this example, three sub
omponents exist: a 
ooler anda driller sub
omponent as in the previous example, and a feeding 
omponenttransporting workpie
es to the driller.The 
orresponding implementation automaton is shown in Figure 7.2(top). It shows the state mapping result at state s in the implementationautomaton (dotted lines). Due to the two bran
hes of the IF statement, twodi�erent situations emerge:� Situation 1 with knowledge
K = {c.isStarted, d.isStarted,¬f.pieceAtDriller}� Situation 2 with knowledge
K = {c.isStarted, d.isStarted, d.isDrilling}
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CF C :

¬f.pieceAtDriller()
CF C : f.pieceAtDriller()

CF C : d.rpmReached()

s

τ

τ

d.down!

d.down?

τ

τ

τ

start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

Post : isDrilling()

Pre : rpmReached()

Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?

Figure 7.2: Finding valid routine 
alls.The two situations do not only di�er in the asso
iated knowledge, butalso in the mapped states of the driller proto
ol automaton (bottom right).The �rst situation (in whi
h the IF bran
h was not taken) is mapped tothe state dire
tly after the return of the routine start. The se
ond situationis mapped to the state between the return of routine down and the 
all ofroutine up.Valid routine 
alls for this example per situation would then be:� Situation 1: d.stop, d.down� Situation 2: d.upSin
e the interse
tion of these sets of valid routine 
alls is empty, noroutines 
an be proposed at this position. Yet, guarded proposals 
an bemade, whi
h 
he
k for the a
tive situation by proposing an IF statementbefore ea
h of the routines. Guarded proposals in this example are as follows:
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IF NOT f.pieceAtDriller() THEN d.stop();

IF NOT f.pieceAtDriller() THEN d.down();� Situation 2:
IF d.isDrilling() THEN d.up();Note, that the 
onditions of the guarded proposals are just the tests forthe di�erent situations. Guarded proposals are not yet implemented in theprototype implementation of Semanti
 Assistan
e.7.1.2 Intera
tive Assistan
eThe fun
tionality des
ribed above 
an be used to enhan
e existing 
ode pro-posal fa
ilities. In the following, three intera
tive tools for semanti
 end-userassistan
e are presented. All tools propose valid routine 
alls at a sele
ted
ode position.Semanti
 Assist PopupFigure 7.3 shows the proposal popup of the Semanti
 Assistan
e implementa-tion. While the popup presents all synta
ti
ally valid routines and fun
tionsof the sub
omponent driller, it highlights those routines whi
h do not violate
ontra
ts or 
onstraints.

driller.down() and driller.stop() are valid 
alls at the 
ursor position,while driller.start() and driller.up() are invalid and therefore 
rossed out.Still, also the invalid 
alls are shown in the popup menu and 
an even besele
ted and inserted. This is be
ause a program must be allowed to violateits 
ontra
ts temporarily during editing. After editing, the program is 
he
kedagain before it is downloaded to the ma
hine. By 
rossing out the invalid 
allswe at least indi
ate to the end user that a 
all to these routines is invalidhere. Note that 
alls to fun
tions are always possible.
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Figure 7.3: Semanti
 Assistan
e popup window showing valid routines andsemanti
ally invalid routines (
rossed out).Drag-and-drop Assistan
eThe Mona
o visual editor allows a user to insert routine 
alls by drag anddrop. For every 
omponent in the program there is a sidebar menu listing allpossible routine 
alls to this 
omponent. The user 
an sele
t a 
all from thismenu and drag it into the 
ode. While he moves the mouse 
ursor over state-ments the positions where the sele
ted 
all 
an be dropped are highlighted.Valid positions are highlighted by a green plus sign (Figure 7.4(a)), whileinvalid positions are marked by a red 
ross (Figure 7.4(b)). The state infor-mation obtained from 
ontra
ts and 
onstraints is used to �nd the positionswhere a 
all 
an be dropped legally. Note, that it is again possible to dropa 
all also at an illegal position, thus violating the 
ontra
ts of the programtemporarily.Outline HighlightingThe E
lipse outline view shows all routines valid at the sele
ted 
ode posi-tion. We have 
ustomized the outline view to show all routines that 
an be
alled at the sele
ted 
ode position a

ording to the 
ontra
ts. Figure 7.5shows a s
reen shot of the outline view and the visual editor with a sele
ted
ode position. The 
ode position sele
ted is between two statements (high-lighted by a bla
k re
tangle), and a

ording to the 
ontra
ts, only one routine
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(a) Call allowed. (b) Call disallowed.Figure 7.4: Drag-and-drop assistan
e in the visual editor. Figure (a) showsthat it is possible to insert the 
all vSolvent.Open() at the sele
ted lo
ationwhile (b) shows that it is not possible to insert it at another lo
ation.

Figure 7.5: Semanti
 Assistan
e showing valid routines in the outline view.(driller.up) is valid there. All other routines are 
rossed out.7.2 Program RepairSemanti
 errors 
annot be fully eliminated by the tools presented above.A user might need to make temporary 
hanges to a program, turning theprogram invalid. These semanti
 errors are indi
ated in the textual editor byred underline and an error marker at the left margin. Similarly, these errors
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(a) Semanti
 error in text editor. (b) Semanti
 error in visual edi-tor
(
) Semanti
 error in the Mona
o problems viewFigure 7.6: Semanti
 error in the Mona
o text editor and the Mona
ovisual editor. The error shown here is due to a 
onstraint violation. Detailson the error are presented in the Mona
o problems view.are also shown in the visual editor, where a light bulb marks an error whi
h
an be resolved by the pro
edures presented in this 
hapter. Additionally,semanti
 errors are shown in the E
lipse problems view.Program repair is about 
hanging a program 
ontaining a semanti
 errorsu
h that the 
hange removes the 
ontra
t violations. Figure 7.6 shows thedi�erent visualizations for semanti
 errors. Figure 7.12 in Se
tion 7.2.3 showsthe resulting repair proposals and the repaired program.The goal of program repair is to re
over from semanti
 errors by o�ering alist of program 
hange proposals from whi
h the developer 
an 
hoose. Thoseproposals are based on the semanti
ally invalid program and the 
ontra
ts.Sele
ting any of the proposals will make the resulting program semanti
allyvalid. If a program 
ontains more than one semanti
 error, the program repairalgorithm might need to be applied multiple times.



114 CHAPTER 7. SEMANTIC ASSISTANCE7.2.1 GoalsThe goals of the program repair algorithm are to provide program 
hangeproposals that:1. do not introdu
e new errors,2. remove existing semanti
 errors,3. make as few 
hanges as possible,4. are as 
lose as possible to the error lo
ation.Goals 1 and 2 are ne
essary goals, while goal 3 
an be quanti�ed in termsof number of 
hanges and an asso
iated weight per 
hange operation. Theweight of one program 
hange proposal is the sum of the weighted 
hangeoperations and 
an be used to rank di�erent program 
hange proposals and�nd those that make minimal 
hanges while still ful�lling goals 1 and 2(lower weight ranked higher). Goal 4 aims for lo
al 
hanges that an enduser programmer 
an 
omprehend by looking at the 
ode where the erroro

urred, without having to sear
h through several routines.7.2.2 Repair StrategiesThe repair strategies of the program repair algorithm di�er based on thetype of semanti
 error. The types of semanti
 errors that we 
an �nd are asfollows:1. Invalid 
all sequen
e: the sequen
e of routine 
alls in the program vio-lates the sequen
es allowed by the proto
ol automaton of a sub
ompo-nent.2. Condition violated(a) Pre
ondition violated: a sub
omponent routine is 
alled withouthaving the pre
ondition of this 
all established.(b) Constraint violated: a 
all to a sub
omponent generates knowledgethat violates one or more 
onstraints.
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) Parent post
ondition violated: at the end of a routine, the post
on-dition of the routine in the 
omponent's 
ontra
t is not ful�lled.Error type 1 (invalid 
all sequen
e)The semanti
 errors of type 1 boil down to an invalid routine 
all due toa missing transition in the proto
ol automaton. These errors 
an be �xedby 
hanging the transitions in the implementation automaton. The followingrepair strategies 
an therefore be 
hosen:� Insert a routine 
all whi
h is valid in the 
ontra
ts (weight: 2)� Remove a routine 
all (weight: 3)� Move a routine 
all to some other position (total weight: 1)Error type 2 (
ondition violated)Semanti
 errors of type 2 
an only be �xed by 
reating new knowledge, su
hthat the 
ondition 
urrently violated is ful�lled when the repair proposalsare applied. A repair proposal therefore 
an 
onsist of the following repairstrategies:� Insert 
alls establishing the ne
essary 
ondition (weight: 2).� Remove a routine 
all (weight: 3).� Insert a WAIT statement, if the 
ode position is within a parallel 
ontextor the violated 
ondition is a pre
ondition whi
h 
an not be establishedby a post
ondition of a routine (weight: 1.4).� Insert an IF statement, if there is at least one situation in whi
h theviolated 
ondition is satis�able (weight: 3).Remark: If there was no situation in whi
h the 
ondition 
anbe satis�ed, there is no use in adding an IF statement, sin
e itwould only make the error lo
ation unrea
hable.



116 CHAPTER 7. SEMANTIC ASSISTANCE1 BEGIN2 c.start();3 d.start();4 WAIT d.rpmReached();5 d.down();6 d.up();7 c.stop();8 d.stop();9 ENDFigure 7.7: Mona
o 
ode with semanti
 error due to 
onstraint violation.The weights have been 
hosen su
h that the goals stated above are met asgood as possible. We assume, that 
ertain mistakes are more 
ommon thanothers, therefore the repair proposals for these mistakes have a lower weight.Severe 
hanges, like removing a routine 
all have the highest weight (3), sin
ewe 
an assume that an end user would not add an unne
essary routine 
all,but rather add it at an inappropriate lo
ation. Thus, moving a routine 
allhas the least weight (1). Adding a routine 
all (without removing the same
all at another lo
ation) has an intermediate weight (2).7.2.3 AlgorithmThe program repair algorithm uses bounded depth �rst sear
h to �nd 
hangeproposals. In every step of the depth �rst sear
h, all repair strategies (insert
all, remove 
all, ...) are 
onsulted to repair the program. As soon as a se-quen
e of 
hange a
tions has been found, that lo
ally repairs the program,this set of 
hanges is added as a new proposal to the result. A sear
h pathis no longer followed, if the depth has rea
hed a 
ertain limit, or the totalweight of the 
hanges has ex
eeded a maximum weight.In order to illustrate the algorithm, we will demonstrate it by means ofan example. The 
ode with the semanti
 error 
an be found in Listing 7.7.Assume, we have a 
onstraint de�ning that the 
ooler must not be stoppedwhile the driller is started. The semanti
 error then is in line 7, where the
ooler is stopped, before the driller.Figure 7.8 shows the part of the implementation automaton 
ontainingthe semanti
 error. The algorithm starts to sear
h for program repair propos-
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1 2 3 4 5 6 7 8 9

d.down! d.down? d.up! d.up? c.stop! c.stop? d.stop! d.stop?Figure 7.8: Program repair example.als at the state dire
tly before the statement where the violation was dete
ted.In our example, this is state 5, dire
tly before the transition c.stop!.A fragment of the sear
h tree is shown in Figure 7.9. For 
larity, the inser-tion of WAIT or IF statements has been omitted as possible repair a
tions inFigure 7.9, be
ause they do not lead to valid repairs in this parti
ular exam-ple. Dashed edges indi
ate 
ontinuation of the sear
h, while 
he
k marks labelnodes with valid repair proposals. The latter nodes also 
ontain a numberdenoting the total weight of the proposal.We will take a look at one of the sear
h paths, spe
i�
ally, at the sear
hpath having the minimal total weight. This path is highlighted in Figure 7.9.The sear
h pro
edure starts at the root of the sear
h graph and reasons about
hanges to the implementation automaton. The �rst strategy 
onsulted, isthe strategy for adding routine 
alls. This strategy looks at the states mappedto the 
urrent state in the implementation automaton (state 5) and looks forlegal 
ontinuation routine 
alls. In state 5, 
alls to the routines d.down and
d.stop are valid a

ording to the 
ontra
ts. No 
alls to the sub
omponent
ooler are valid at this position, though.The sear
h pro
edure adds new bran
hes (�rst d.down, then d.stop) tothe sear
h tree. We 
ontinue at the highlighted path in the sear
h tree: now,the edge d.stop is followed, we add new virtual states 
onne
ted by the tran-sitions d.stop! and d.stop? to the implementation automaton. All the know-ledge update and 
he
king steps as 
ondu
ted in the state mapping algorithmare performed, su
h that a virtual state mapping for the new states exists.Figure 7.10 shows the new virtual states.The new terminal virtual state V2 is used as the starting point for thenext level in the sear
h algorithm. Again, all repair strategies are 
onsulted.We 
ontinue with the strategy following the highlighted path in Figure 7.9.This strategy is 
alled 
onsume and does not add any new virtual nodesto the implementation automaton, but marks the routine 
all following theinsertion point of the virtual bran
h in the automaton as 
onsumed. Doing so
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insert
d.down insert d.up ...remove 
.stop ...d.stop insert ...remove 
.stop remove 4d.stop ...
onsume 
.stop insert 
.start ...remove 1d.stop ...

remove 3
.stop insert d.down insert 7d.up ...remove 8d.stop ...d.stop ...remove 6d.stop ...
onsme 3d.stop ...Figure 7.9: Program repair algorithm sear
h tree.
V1 V2

3 4 5 6 7 8 9

d.up! d.up? c.stop! c.stop? d.stop! d.stop?

d.
st
op

!

d.stop?

Figure 7.10: Program repair example with virtual states after one step.is only possible if this 
all does not lead to any 
ontra
t violations in the newvirtual mapping. In the example, the 
all c.stop is 
onsumed and a virtual



7.2. PROGRAM REPAIR 119Repair Proposal Total Weightinsert d.stop, remove c.stop, remove d.stop 4insert d.stop, skip c.stop, remove d.stop 1remove c.stop 3remove c.stop, insert d.down, insert d.up 7remove c.stop, insert d.down, remove d.stop 7remove c.stop, remove d.stop 6remove c.stop, skip d.stop 3Figure 7.11: Repair proposals and their weight, ordered by appearan
e inthe sear
h tree.state mapping and knowledge update is established for the 
onsumed nodes.Next, again all repair strategies are 
onsulted. After the insertion strat-egy was exe
uted, the remove strategy removes the routine 
all d.stop. Theresulting set of 
hanges (insert d.stop before c.stop and remove the existing
d.stop after c.stop) is a valid repair proposal. The question remains, how thealgorithm dete
ts whether a 
ertain path in the sear
h tree is a valid repairproposal.Re
ognizing Valid Repair ProposalsAfter ea
h appli
ation of a repair strategy, the algorithm 
he
ks whetherthe resulting virtual state mapping 
an be 
ontinued with the rest of theimplementation automaton. Sin
e a full state mapping appli
ation in everynode of the sear
h tree would take too long, only a �xed number of statemapping steps are performed. If no violations are found within these steps,the path leading to this node in the sear
h tree is assumed to be a validrepair proposal.Prioritizing Repair ProposalsIn the example presented, several valid repair proposals have been identi�ed.In order to present only the most adequate proposals to the programmer,these proposals need to be sorted. We use the total weight of a proposalbased on the sum of the individual weights of the repair strategies.



120 CHAPTER 7. SEMANTIC ASSISTANCE

(a) Program repair proposals wizard showing pro-posals for the example. (b) Result of program repair.Figure 7.12: Program repair wizard proposing repair a
tions with minimalimpa
t.Remark: Although a move strategy has been introdu
ed it isnot an expli
it strategy, rather a 
onsequen
e of an insert and asubsequent remove strategy (or vi
e versa) of the same routinesymbol.The highlighted path in the example has a total weight of 1, sin
e thetwo strategies, insert and remove, 
an be merged to a logi
al move strategyhaving the weight 1. Thus, this repair proposal has the minimal weight andwill be ranked higher than other repair proposals. Figure 7.11 shows all repairproposals of the sear
h tree with their respe
tive total weights.These ordered repair proposals are then used in a wizard as shown inFigure 7.12(a). The end user 
an then sele
t the adequate repair proposaland the tool automati
ally applies the 
hanges (Figure 7.12(b)).These repair proposals are assumed to be valid repair proposals, as statedabove. Nevertheless, this assumption might be wrong, if the program repairproposal introdu
es errors whi
h emerge later in the program. In order toonly propose repair proposals that are guaranteed to repair the program, we
ould apply the 
hange proposals of the best repair proposals to a 
opy ofthe defe
tive program and then have the program 
he
ked. However, this
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he
k may again give false positives in 
ase the program had multiple viola-tions. Program repair only repairs the �rst violation within a program, sin
elater violations might be 
onse
utive faults. A repair proposal whi
h 
orre
tsthe �rst violation does not ne
essarily make the whole program 
orre
t, buteliminates this �rst violation.Error Lo
ation Before Error Dete
tionIn the example shown above, it was simple to �nd a repair proposal, be
ausethe lo
ation where the 
ontra
t violation was dete
ted was the exa
t lo
ationwhere a (short) repair proposal 
ould be found. Nevertheless, there mightbe situations where an error 
an be �xed by 
hanging the program severalstatements before the error lo
ation. The algorithm is therefore also exe
utedat states prior to the error lo
ation, thus 
reating additional sear
h trees.To a

ount for the goal of having 
hanges as 
lose as possible to theerror lo
ation, repair proposals resulting from su
h an additional sear
h treefarther from the lo
ation of error dete
tion have an additional weight.Program Repair Example with WAIT StatementListing 7.13 shows a routine of a program 
onsisting of a 
ooler and a driller
omponent, whi
h are used in parallel. The parallel threads are 
oordinatedby a WAIT statement whi
h waits for the 
ooler to be started, before thedriller is started. Note, that the se
ond parallel blo
k starts in line 8. However,the 
ooler is stopped only after a 
ertain timeout (line 11). Sin
e we 
annotbe sure that the driller is stopped before the 
ooler, a 
onstraint is violated.The program repair algorithm �nds that the error lo
ation is within aparallel blo
k, thus it allows using the program repair strategy whi
h inserts
WAIT statements. The repair proposals found are:� insert WAIT NOT driller.isStarted() before cooler.stop� delete 
all cooler.stop



122 CHAPTER 7. SEMANTIC ASSISTANCE1 PARALLEL2 WAIT cooler.isCooling();3 driller.start();4 driller.down();5 driller.up();6 driller.stop();7 ||8 WAIT nextItem();9 cooler.start();10 MSG "drilling hole into item";11 WAIT TIMEOUT(3000);12 cooler.stop();13 ENDFigure 7.13: Mona
o 
ode with semanti
 error. The 
ooler might bestopped, before the driller.7.3 Program State VisualizationProgram state visualization aims at helping program understanding for endusers who have to maintain or adapt existing programs. Currently, end usersonly have two possibilities to get an understanding of an existing program:� read the sour
e 
ode and try to understand it, and� run the program to �nd out what the results are.These possibilities are not adequate for end users. On one hand, endusers do not have the software engineering expertise to be able to understand
omplex programs in detail. On the other hand, in the automation domainit 
an be fatal to run a program without knowing the results beforehand.7.3.1 OverviewTo ta
kle these issues, a program visualization tool has been 
reated, whi
hallows a design-time visualization of Mona
o programs [Str09℄. It visualizesthe ma
hine states 
orresponding to the di�erent positions in a Mona
oprogram without exe
uting the program.
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• 
.isCooling
• ¬d.isDrilling
• d.isStarted Situation 1

Mona
o IDE State Dedu
tion VisualizationFigure 7.14: Program visualization overview.The program visualization tool uses situational knowledge 
reated bythe state mapping algorithm. The overall pro
ess works as follows (see Fig-ure 7.14):1. The user sele
ts a position in the visual editor of the Mona
o IDEwithout exe
uting the program.2. The states in the implementation automaton 
orresponding to the se-le
ted statement are sear
hed.3. The situational knowledge at these states are summed up and forwardedto the visualization tool.4. The visualization tool uses the situational knowledge to visualize thema
hine state.7.3.2 Knowledge Dedu
tionThe knowledge dedu
tion system generates situational knowledge preparedfor the visualization tool. The visualization tool gives a list of questions tothe knowledge dedu
tion system whi
h in turn 
omputes the answers. Thequestions are fun
tion symbols for whi
h the tool needs the value in orderto visualize the 
omponent state. The answer to ea
h question 
an either beTRUE, FALSE, or UNKNOWN, depending on whether the knowledge in a
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tion Symbol Value
c.isCooling TRUE

d.isDrilling FALSE

d.isStarted TRUE

d.rpmReached UNKNOWNFigure 7.15: Results of the state dedu
tion pro
ess.
ertain situation implies the question (TRUE ), implies the negation of thequestion (FALSE ) or neither of them (UNKNOWN ).Assume that we have a 
ooler and a driller 
omponent as shown in Fig-ure 7.14. The user 
li
ks the spa
e after the statement driller.down()to see the state of the ma
hine after this statement has been exe
uted. Thesystem �nds a single state in the implementation automaton with one situ-ation atta
hed. The knowledge in this single situation is K ={c.isCooling,

d.isStarted, ¬d.isDrilling}.The visualization asks for the values of all fun
tion symbols (in the ex-ample c.isCooling, d.isStarted, d.isDrilling, and d.rpmReached). From theknowledge above and the invariants of the system, the values shown in Fig-ure 7.15 are dedu
ed using an SMT solver. For ea
h question, the SMT solverneeds to verify whether sat(K∧Inv∧question) or sat(K∧Inv∧¬question).If both satis�ability 
he
ks are true, or both 
he
ks are false, the value
UNKNOWN is used. If the lo
ation sele
ted by the end user 
orrespondsto several states in the implementation automaton, and/or multiple situa-tions exist, the pro
ess des
ribed above is exe
uted for ea
h situation. Thevisualization tool is then provided with the answers for ea
h situation.7.3.3 VisualizationThe state visualization tool is a plugin to the Mona
o IDE and displaysa s
hemati
 view of a set of Mona
o 
omponents. Based on the valuesgenerated from the state dedu
tion (see previous se
tion), the visualizationdisplays parts of 
omponents in di�erent 
olors, size, position, rotation, andvisibility and 
an even run animations. The visualization allows users toswit
h between multiple situations, so that the end user 
an see in whi
hstates the system 
ould be, when the sele
ted lo
ation in the 
ode is rea
hed.



7.3. PROGRAM STATE VISUALIZATION 125The visualizations of the 
omponents, the binding of properties of the 
om-ponents on values of fun
tion symbols, as well as the animations need to be
reated in advan
e by an expert designing the Mona
o 
omponent.Figure 7.16 shows the visualization of a hydrauli
 solvent 
an 
omponent
onsisting of a set of valves and a solvent 
ontainer (from the E
oChargePD
ase study, see Chapter 8). The visualization shows a pi
ture of the 
urrentsitutation for the sele
ted position in the Mona
o routine. It shows ananimation of the solvent �ow (arrows in the pipe), the 
hange of the state ofa valve (spinning valve symbol), the 
ontainer �lling up with solvent and open(green) and 
losed (red) valves as well as valves whose states are unknown(gray).Note, that for the sele
ted 
ode position, the state dedu
tion algorithmhas found two di�erent situations (situation 1 is shown 
urrently). The user
an swit
h between the two situations with the arrow buttons in the upperleft 
orner to see the visualization of the state of the 
omponents in anothersituation. Additionally, all fun
tion symbols and the values reported by thestate dedu
tion pro
ess are shown for the sele
ted situation (top right).



126 CHAPTER 7. SEMANTIC ASSISTANCE

Figure 7.16: State visualization with �ow animation.



Chapter 8Case Studies and Evaluation
This 
hapter des
ribes 
ase studies in whi
h the presented work has beenvalidated. Furthermore, evaluation results about program state visualizationare presented.8.1 Keplast Inje
tion Molding Ma
hineThe inje
tion molding ma
hine software investigated in this se
tion is a reim-plementation of an existing 
ontrol program of our industrial partner Keba.As the system has already been introdu
ed in Se
tion 3.5 we will refer toSe
tion 3.5 for details on the Mona
o implementation.Re
all, that the program is stru
tured into a hierar
hy of 
omponents(see Figure 3.11). Ea
h 
omponent has an interfa
e whi
h de�nes how it 
anbe used by its upper 
omponent.8.1.1 Contra
tsWe have 
reated 
ontra
ts for all interfa
es of the Keplast system. The 
on-tra
ts des
ribe the intended usage of the 
omponents. We will take a lookat the interfa
es IMoldCtrl and INozzleCtrl and their 
ontra
ts. Theinterfa
e de�nition of IMoldCtrl is shown in Figure 8.1.The 
ontra
t for this interfa
e (see Figure 8.2) allows us to 
all the open127



128 CHAPTER 8. CASE STUDIES AND EVALUATION1 INTERFACE IMoldCtrl2 EVENTS error;3 FUNCTION isOpen() : BOOL;4 FUNCTION isClosed() : BOOL;5 FUNCTION clampPos() : REAL;6 ROUTINE open();7 ROUTINE close();8 ROUTINE stop();9 END IMoldCtrl Figure 8.1: Interfa
e IMoldCtrl.and close routines in turn. It also allows us to 
all the routine stop on themold, if the routines close or open are interrupted (by an error signal).The 
all of the routine open has a post
ondition that guarantees that afterthe 
all the proposition isOpen holds. Similarly, the routine 
all close hasthe post
ondition isClosed. In addition, the 
ontra
t also has an invariant,stating that the mold 
an never be opened and 
losed at the same time (seeFigure 8.3). When an error has interrupted exe
ution of the routines closeor open, the knowledge about the state of the mold is lost (it might beopened, 
losed, or in an intermediate state). The knowledge about any ofthese states is therefore retra
ted (see Figure 8.2).
open! open?

close!close?

stop! stop?

τ

τ

Post : isOpen()

Post : isClosed()

Retract : isClosed, isOpenFigure 8.2: Proto
ol automaton for the interfa
e IMoldCtrl.The se
ond 
ontra
t we present for the Keplast 
ase study is the 
on-tra
t of the interfa
e INozzleCtrl (see Figure 8.4). The nozzle 
omponent
Invariant: NOT (isClosed() AND isOpen())Figure 8.3: Invariant of IMoldCtrl.



8.1. KEPLAST INJECTION MOLDING MACHINE 1291 INTERFACE INozzleCtrl2 ROUTINE startHeating();3 ROUTINE inject();4 ROUTINE plasticize();5 FUNCTION tempReached() : BOOL;6 FUNCTION isPlasticized() : BOOL;7 FUNCTION isInjected() : BOOL;8 END INozzleCtrl Figure 8.4: Interfa
e INozzleCtrl.
ontrols the supply with plasti
 granulate for the inje
tion of melted plas-ti
 into a mold. Therefore it has the routines inject, plasticize, and
startHeating and the fun
tions tempReached, isPlasticized, and
isInjected. The 
ontra
t of the nozzle spe
i�es, that �rst the nozzle needsto be heated before the inje
tion routine and the plasti�
ation routine 
anbe exe
uted in turn.The routine startHeating guarantees that after its exe
ution the melt-ing temperature of the material has been rea
hed. The routine inject needsthe nozzle to be �lled with plasti
ized material or to have the target temper-ature rea
hed and guarantees that after it is exe
uted, the plasti
 material isinje
ted. Similarly, the routine plasti
ize guarantees that after its exe
utionthe fun
tion isPlasticized returns true.

startHeat! startHeat?

inject! inject?

plasticize!plasticize?

Post : tempReached

Pre : isP lasticized ∨ tempReached

Post : isInjected

Pre : isInjected
Post : isP lasticizedFigure 8.5: Proto
ol automaton for the interfa
e INozzleCtrl.The 
ontra
t for INozzleCtrl also has an invariant (see Figure 8.6).The invariant states, that the material in the nozzle 
annot be re�lled (plas-ti
ized) and inje
ted at the same time.
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Invariant: NOT (isPlasticized() AND isInjected())Figure 8.6: Invariant of INozzleCtrl.8.1.2 ConstraintsIn addition to the 
ontra
ts, we also identi�ed 
onstraints whi
h need to holdat any time during exe
ution of the system. Figure 8.7 shows a 
onstraintstating that the s
rew may only be in front, if the heating 
ontrol has rea
hedthe required temperature.
CONSTRAINT (IScrewCtrl screw, IHeatingCtrl heating)

[NOT (screw.isInFront() AND NOT heating.tempReached())]Figure 8.7: Constraint of IScrewCtrl and IHeatingCtrl.
8.1.3 End-User SupportIn this se
tion we will show the appli
ation of the di�erent semanti
 assistan
etools in the Keplast 
ase study. All �gures will show the tools applied inthe routine Kundenfenster whi
h is the routine in whi
h end users aresupposed to make program 
hanges. First, we will show the semanti
 assistpopup in the Mona
o textual editor. Figure 8.8 shows the popup betweentwo parallel statements of the routine. The sele
ted 
omponent is mold (sin
e
mold. is already typed in the editor), and the proposed routine is open.A

ording to the 
ontra
t, no other routine may be 
alled at this position.Figure 8.9 shows the outline highlighting feature of the Mona
o IDE.The spot below the routine 
all nozzle.inject is sele
ted (see mouse
ursor) and the outline view shows routines whi
h may be 
alled at thisposition in the 
ode. The i
on of routines that may not be 
alled at thislo
ation is 
rossed out.Figures 8.10 and 8.11 show the drag-and-drop assistan
e in the visualeditor of the Mona
o IDE. Figure 8.10 shows the user dragging the routine
all mold.open from the outline view to a position where inserting the 
allis allowed. The immediate feedba
k of the system is the green plus sign,
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Figure 8.8: Semanti
 assist popup in the routine Kundenfenster propos-ing routine open.

Figure 8.9: Outline highlighting in the routine Kundenfenster for thesele
ted position in the 
ode.
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Figure 8.10: Drag-and-drop assistan
e allowing to insert a routine 
all.

Figure 8.11: Drag-and-drop assistan
e denying to insert a routine 
all.showing that adding the routine 
all does not lead to a 
ontra
t violation atthat lo
ation in the 
ode.Figure 8.11, in 
ontrast, shows the user dragging the same routine 
all toa position where it is not allowed to insert the 
all. A red 
ross sign indi
atesthat the routine 
all is not valid here.Figure 8.12 shows the semanti
 error resulting from inserting the rou-tine 
all mold.open at an invalid position. In this example the 
all now
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Figure 8.12: Semanti
 error: the routine mold.open is 
alled twi
e withinthe parallel statement.appears in two parallel bran
hes, whi
h is not allowed by the 
ontra
t. Thesemanti
 error is highlighted by a red line and a light bulb. In the example,both instan
es of mold.open are highlighted as errors, sin
e the veri�
ationalgorithm 
annot dedu
e, whi
h of the 
alls is an a
tual error. Cli
king thelight bulb opens the program repair assistant shown in Figure 8.13. Programrepair proposes to remove a 
all to mold.open.
8.2 Duerr Paint Supply SystemDuerr is a 
ustomer of our proje
t partner Keba and produ
es painting robotsfor the automotive industry. We implemented a 
ase study modeling the paintsupply system of a painting robot used in the automotive industry (produ
tname: E
oCharge PD). The goal of the 
ase study was to show the appli
a-bility of Mona
o and its tools, in
luding Semanti
 Assistan
e, to a system
omposed of dozens of 
omponents. We have reimplemented the rea
tive
ontrol part of the system and proved the appli
ability of Mona
o. In thisse
tion, we will des
ribe the system, the 
ontra
ts of its 
omponents, andthe 
onstraints we identi�ed. Finally, the appli
ation of the various Semanti
Assistan
e tools is shown.



134 CHAPTER 8. CASE STUDIES AND EVALUATION

(a) List of proposals. (b) Highest ranked proposal.Figure 8.13: Program repair proposing to delete one of the 
alls to
mold.open.8.2.1 Mona
o Appli
ationThe paint supply system 
onsists of six Mona
o 
omponents and over 60native sub
omponents. It regulates the paint supply and the purging of thepaint pipes. The native sub
omponents are mostly valves being opened and
losed to let paint, air and solvent �ow through pipes, and to �ll paint pis-tons. Some of the pipes 
ontain so-
alled pigs (pipeline inspe
tion gauges)that �oat in the pipe and physi
ally separate di�erent liquids or air beingtransported.Figure 8.14 shows the main 
omponents of the system. On the bottomleft, the 
olor 
hanger 
omponent allows the system to insert di�erent typesof paint, without mixing any two 
olors. Next, a pipe with a pig leads to oneof the sub
hannels. The paint supply system may 
onsist of multiple sub
han-nels whi
h independently supply the atomizer 
omponent (top right) withthe exa
t 
olor needed. The implemented system has two sub
hannels. Whileone of the sub
hannels pushes paint to the atomizer, the other sub
hannelis reloaded with the appropriate paint for the next produ
t. The atomizer isthe spray nozzle that 
oats the produ
t with the paint. In addition, the sol-vent 
an 
omponent provides the system with solvent for purging the pipes
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Figure 8.14: S
hema of the Duerr appli
ation.whenever a pipe needs to be loaded with another paint.8.2.2 Contra
tsWe have 
reated 
ontra
ts for all interfa
es of the Duerr system. The interfa
e
IValve is used most often, therefore we will dis
uss this interfa
e and its
ontra
t. The interfa
e de�nition is shown in Figure 8.15. It 
onsists of thefun
tion IsOpen returning the 
urrent state of the valve. In addition, twoatomi
 routines exist, whi
h 
an be used to open and 
lose the valve.The 
ontra
t for this interfa
e is depi
ted in Figure 8.16. The 
ontra
tallows opening and 
losing the valve in turn. Post
onditions guarantee thatafter 
alling the routine open the proposition isOpen() holds. Similarly,
alling the routine close guarantees that the valve is not opened.Another 
omponent in the Duerr appli
ation is the solvent 
an. The sol-



136 CHAPTER 8. CASE STUDIES AND EVALUATION1 INTERFACE IValve2 FUNCTION IsOpen() : BOOL;3 ATOMIC ROUTINE Open();4 ATOMIC ROUTINE Close();5 END IValve Figure 8.15: Interfa
e IValve.
Post : ¬isOpen()Post : isOpen()

open!

open? close!

close?

Figure 8.16: Proto
ol automaton for the 
ontra
t of IValve.1 INTERFACE ISolventCan2 FUNCTION FillLevel() : INT;3 ROUTINE Init();4 ROUTINE Refill();5 END ISolventCanFigure 8.17: Interfa
e ISolventCan.vent 
an stores solvent to purge pipes whi
h are used to dire
t di�erent liquids(paint in di�erent 
olors) in the paint supply system. The 
an is re�lled reg-ularly from a larger solvent tank, and the pipe between this solvent tank andthe solvent 
an needs to be �lled with air afterward in order to ele
tri
allyinsulate the tank from the rest of the paint supply system. The interfa
e ofthe solvent 
an is ISolventCan and is shown in Figure 8.17. It 
ontains thefun
tion FillLevel and two routines for the initialization (routine Init)of the valves and for re�lling the solvent 
an (routine Refill).The proto
ol automaton for the 
ontra
t of ISolventCan is shown inFigure 8.18. It requires to �rst 
all the Init routine to initialize the solvent
an. Afterwards, the routine Refill 
an be 
alled repeatedly. The 
ontra
tdoes not give any guarantees about the 
omponent state and does not usepre
onditions.
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Init!

Init?

Refill! Refill?Figure 8.18: Proto
ol automaton for the 
ontra
t of ISolventCan.
8.2.3 ConstraintsWe have identi�ed many ex
lusion 
onditions that state that 
ertain valvesmay not be open simultaneously, and modeled these 
onditions as 
onstraints.In the following, we will take a look at the solvent 
an 
omponent.Figure 8.19 shows the solvent 
an with its valves and pipes in di�erentstates, while the solvent 
an is re�lled. The left part of the system is 
onne
tedto the solvent tank by a valve that brings the solvent to the solvent 
an. Thesolvent 
an (on the right side) is 
onne
ted to the left part of the system bya pipe. Within the pipe a pig separates solvent from air, su
h that solvent
an be pressed into the solvent 
an without getting air into the 
an.Figure 8.20 shows the ex
lusions on the valves, meaning that two valvesthat are 
onne
ted by a thi
k red line may never be open at the same time.The ex
lusions are quite obvious: an air input must never be opened togetherwith a solvent valve, su
h that no air bubbles are in the solvent. Similarly,the solvent must not be pushed to the drain. The 
onstraints for these ex
lu-sions are given in Listing 8.1, for a 
omprehensive list of all 
onstraints seeAppendix B.In the original system, these 
onditions had to be 
he
ked at runtime (inevery 
y
le of the exe
ution) and therefore had a great negative impa
t onruntime resour
es. These 
onditions 
an now be veri�ed stati
ally, even whenend users 
hange the program.
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(a) Initial state of the system. Allvalves are 
losed. (b) The solvent 
an is being �lled.

(
) The solvent 
an is getting full. (d) The remaining solvent in the pipeis pushed into the 
an using the pig.

(e) When the solvent 
an is �lled, the�lling valve is 
losed and the solvent
an be used to purge pipes.Figure 8.19: Stru
ture and fun
tioning of the solvent 
an 
omponent in theDuerr 
ase study.
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Figure 8.20: Ex
lusion 
onditions between the valves of the solvent 
an
omponent.
CONSTRAINT (IValve vPSCAir, IValve vPSCSolvent)
[NOT (vPSCAir.IsOpen() AND vPSCSolvent.IsOpen())]

CONSTRAINT (IValve vPSCAir, IValve vPSCDrain)
[NOT (vPSCAir.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vPSCSolvent, IValve vPSCDrain)
[NOT (vPSCSolvent.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vCanSFill)
[NOT (vCanSAir.IsOpen() AND vCanSFill.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vPSCSolvent)
[NOT (vCanSAir.IsOpen() AND vPSCSolvent.IsOpen())]

CONSTRAINT (IValve vCanSFill, IValve vCanSToAtomizer)
[NOT (vCanSFill.IsOpen() AND vCanSToAtomizer.IsOpen())]Listing 8.1: Constraints used in the 
omponent HydrSolventCan 
asestudy Duerr.8.2.4 End-User SupportThe di�erent semanti
 assist tools have also been evaluated in the Duerr
ase study. All �gures will show the tools applied in the routine Fill of thesolvent 
an implementation HydrSolventCan.First, Figure 8.21 shows the semanti
 assist popup in the Mona
o texteditor after the 
all to the routine Open of sub
omponent vCanSFill.The sele
ted 
omponent is vCanSToAtomizer, the valve that 
onne
ts thesolvent 
an to the other parts of the paint supply system. The only routineproposed is Close, sin
e opening the valve would violate a 
onstraint (seeListing 8.1).
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Figure 8.21: Semanti
 assist popup in the routine Fill of 
omponent Hy-drSolventCan.Outline highlighting is shown in Figure 8.22. The sele
tion is between theroutine 
alls vPSCSolvent.Open and vCanSFill.Open. In the outlineview (right part of the �gure) some routines are disabled (i
on is 
rossed out).The routine Open of the sub
omponent vPSCAir is disabled, be
ause a 
on-straint enfor
es that the valve vPSCSolvent and vPSCAir are not open atthe same time. Dire
tly above the sele
tion, one of the valves is opened, there-fore the other valve may not be opened. The routines vPSCDrain.Open and
vCanSAir.Open are invalid for the same reason.Figures 8.23 and 8.24 show the drag-and-drop assistan
e in the routine
Fill of the solvent 
an 
omponent. In the �rst �gure, the insertion of the
all is allowed (a green plus sign appears). In the se
ond �gure, the 
allis dragged onto a lo
ation where inserting the routine 
all would violate a
onstraint. Therefore a red 
ross sign is shown to indi
ate this violation.Figure 8.25 shows the routine Fill with a semanti
 error. The valve
vCanSToAtomizer is opened although this violates a 
onstraint. This se-manti
 error is highlighted in the visual editor by the red line and a lightbulb. The light bulb signalizes that program repair 
an �nd a suitable �x forthe error.The program repair results for the semanti
 error in Figure 8.25 are shownin Figure 8.26. The proposals with the best ranking are to either 
lose thevalve vCanSFill before the lo
ation of the error, or to delete the 
all 
ausing
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Figure 8.22: Semanti
 Assistan
e highlighting valid and invalid routines inthe outline.

Figure 8.23: Drag-and-drop assistan
e allows adding the routine 
all.the 
onstraint violation.8.3 Program State Visualization EvaluationIn order to show the e�e
tiveness of program state visualization, an evalu-ation study with undergraduate me
hatroni
s students was 
ondu
ted. Thisstudy was on end-user programming and its results were � although very
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Figure 8.24: Drag-and-drop assistan
e indi
ates violation of a 
ontra
t ora 
onstraint.

Figure 8.25: Routine Fill with a semanti
 error.promising � not statisti
ally signi�
ant. We therefore are going to set up ase
ond study to probe the bene�ts of program state visualization on programunderstanding.8.3.1 Program Visualization Guiding End-User Pro-grammingThe �rst experiment had the goal to identify the bene�t of program visual-ization for end-user programming. It was 
ondu
ted with 11 undergraduate
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Figure 8.26: Program repair proposals for the semanti
 error shown inFigure 8.25.students whi
h were presented a 
omponent of a bottle sorting appli
ationby means of a video 
lip of a ma
hine simulation. We introdu
ed the studentsto the appli
ation, Mona
o-spe
i�
 statements, as well as all possible rou-tine 
alls and 
onditions. The presentation and introdu
tion was performedin groups of 4 students, su
h that the students had equal knowledge of thesystem. The students were then assigned to one of four experiment stations,where they were assigned the task of programming the bottle partition al-gorithm they had seen before. In order to keep the impa
t of tool handlingand usability as low as possible, an operator trained in using the Mona
osystem performed the programming tasks as the students 
ommanded.Ea
h group was (without knowledge of the students) separated into twosubgroups, one group being able to use the program visualization, and an-other group that had to do the programming task without using the programvisualization tool. The visualization given to one group of the students isshown in Figure 8.27. It shows the top view of a 
onveyor belt with two sen-sors (bla
k dots to the left of the 
onveyor belt) and two gates whi
h 
ouldbe used to stop bottles from being moved by the belt. The belt moves bottlesfrom the bottom end to the upper end of the belt, where they are removed bya robot. The task of the students was to 
reate a program that ensures thatalways at most one bottle was at the removal position (top of the �gure).



144 CHAPTER 8. CASE STUDIES AND EVALUATIONVisualization x No Visualization ySkills 3 4 1 1 3 2 2.33 2 2 3 2 1 2.00Duration [mins℄ 5 7 2 2 6 3 4.17 5 9 5 3 6 5.60Table 8.1: Results of the �rst experiment

Figure 8.27: Program state visualization used in the �rst experiment.The visualization showed the students the 
urrent state of the system:whether a 
ertain gate was opened or 
losed, whether a bottle was at the �rstsensor (between the gates) or at the se
ond sensor (at the removal positionat the end of the belt). The students 
ould use the visualization to thinkabout the next step they wanted the program to perform.Ea
h student was asked to rate his programming skills on a s
ale of 1 to5, with 1 being "very good" and 5 being "poor". This way we 
ould tra
kthe in�uen
e of general programming skills on the experiment. We measuredthe time it took the students to implement the program 
orre
tly. Table 8.1shows the results of the individual students in this experiment.InterpretationDue to the small sample size, no well-grounded statements 
an be made.We have seen that program visualization has no signi�
ant impa
t on theprodu
tivity of programmers who need to 
reate a program from s
rat
h.



8.3. PROGRAM STATE VISUALIZATION EVALUATION 1458.3.2 Program Visualization Helping Program Under-standingA se
ond detailed experiment is being planned for the next semester, sin
ethe �rst experiment did not reveal statisti
ally signi�
ant data. The experi-ment will resear
h the bene�t of using program state visualization to under-stand program behavior and �nd bugs. It will be 
ondu
ted in the on
omingsemester with me
hatroni
s students who will be presented a valve systemsimilar to the paint supply system (see Se
tion 8.2). We will introdu
e thestudents to the di�erent 
omponents of the appli
ation and statements spe-
i�
 to Mona
o. Next, the students will have to des
ribe the behavior of aprepared program. We will measure the time it takes the students to fullyexplain the fun
tionality of the program. As a se
ond test, we will give asimilar program to the students, now with a small error introdu
ed. One ofthe valves is not opened, and thus the �uid 
an not �ow through the systemas expe
ted. We will measure again, how long it takes the students to �ndthe error and �nd a suitable solution to the problem. In both tests, we willalso make notes of misunderstandings and false 
on
lusions.Similar to the �rst experiment, we will 
ondu
t the se
ond experimentwith only one half of the students being able to use the program visualization.Both groups will have the Mona
o sour
e 
ode of the defe
tive appli
ationin the visual editor to �nd the error. For this test, we will disable highlightingof 
ontra
t and 
onstraint violations in the visual editor, otherwise �nding theerror would be trivial. The program visualization for this system is depi
tedin Figure 8.28.We have already run this experiment with 
olleagues as test persons andhave seen that the �rst results are very promising. In order to get statisti-
ally relevant data, we will run the experiment with a larger sample size ofstudents.
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Figure 8.28: Program state visualization that will be used in the se
ondexperiment.



Chapter 9Related Work
This 
hapter 
ompares di�erent aspe
ts of our work with existing approa
hesand highlights their di�eren
es. Se
tions 9.1 and 9.2 introdu
e related workon the veri�
ation of 
all sequen
es and safety properties. Se
tion 9.3 de-s
ribes work on automati
 repair of programs based on some spe
i�
ationof 
orre
tness. Se
tion 9.4 
ompares work on program visualization to thedesign-time animation approa
h.9.1 Veri�
ation of Call Sequen
esVeri�
ation of 
all sequen
e 
onstraints has been investigated by many re-sear
hers [OO90,OO92,PV02,HB07,Jin07℄. The systems most similar to thework of this thesis are presented in the following.9.1.1 Ce
il/CesarOlender and Osterweil des
ribe Ce
il, a language for the spe
i�
ation of se-quen
ing 
onstraints in a regular expression diale
t (AQRE - an
hored, quan-ti�ed, regular expressions) [OO90℄. The language 
an be used to des
ribevalid exe
ution sequen
es of routine 
alls of abstra
t data types. Instead ofspe
ifying the 
omplete exe
ution path Ce
il expressions des
ribe portions ofthe valid behavior, therefore allowing partial spe
i�
ation of behavior. Ce
ilspe
i�
ations �rst des
ribe whi
h routine 
alls they govern. Then a list of147
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i�
ations starting and ending at so-
alled an
hors follows. An-
hor routines are written in square bra
kets, the spe
ial an
hors [s] and
[t] des
ribe the start and the end of the program, respe
tively.Between two an
hors, expressions similar to regular expressions 
an beused to express valid sequen
es of routine 
alls. The quanti�ers forall and
exists 
an be used to denote that the following expression needs to beobserved in ea
h path of the program exe
ution between the an
hors, or inat least one path. The spe
ial symbol ? mat
hes any routine 
all governedby this Ce
il 
onstraint. The operator * denotes an arbitrary number of rep-etitions of the pre
eding subexpression (in
luding zero times). The operator
+ denotes repetition of the pre
eding subexpression (at least one time).Let's look at an example des
ribing 
all sequen
es of an abstra
t data typefor writing to �les. Reasonable 
onstraints for the available operations (open,
close, write) would des
ribe that a �le needs to be opened before it 
anbe written and must be 
losed before a new �le 
an be opened. Furthermore,one 
ould want to ensure that a �le is only opened if it is eventually written.Listing 9.1 lists a Ce
il 
onstraint for su
h a �le data type.
{open, close, write} (

[s] forall (open; write*; close)* [t]

and [open] exists ?+ [write] )Listing 9.1: Ce
il 
onstraint for a �le operation routinesCesar [OO92℄ is the 
onstraint 
he
king tool for Ce
il expressions. Cesar'ssequen
ing analysis is based on a state propagation algorithm similar to thestate mapping algorithm des
ribed in Se
tion 6.2. Instead of inlining the �owgraph of a 
allee into the �ow graph of the 
aller, Cesar keeps the �ow graphof the 
allee separate and 
ontinues 
he
king of a lo
al routine 
all in the �owgraph of the respe
tive routine. This approa
h makes it possible to analyzere
ursive routine 
alls of abstra
t data types.The implementation of Cesar provided tools to analyze Fortran programs,and support for C and Ada programs was announ
ed. In 
ontrast to proto
ol
ontra
ts, Ce
il provides no means to spe
ify pre
onditions, post
onditionsor invariants to gather information about the abstra
t data type. In addition,Ce
il 
onstraints 
an not operate on multiple instan
es of a data type (vari-ables, sub
omponents), whi
h is ne
essary for the 
omponent-based approa
hof Mona
o.
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olsPlasil et al. present Behavior Proto
ols [PV02,PJP06,Kof07℄, a language forthe des
ription of 
omponent behavior. The language is similar to regularexpressions and des
ribes the intera
tion of 
omponents based on the SOFA
omponent model.SOFA 
omponents implement two types of interfa
es: required and pro-vided interfa
es. The two types of interfa
es 
an be 
ompared to the 
ompo-nent boundaries of Mona
o 
omponents: sub
omponent variables spe
i�edby their interfa
es 
onstitute the required interfa
es, while the interfa
e of the
omponent is the provided interfa
e. The provided interfa
es re
eive events(routine 
alls in Mona
o terms) and the 
omponent sends events to the re-quired interfa
es. The 
ommuni
ation stru
ture of the 
omponents in SOFAallows more than Mona
os stri
tly hierar
hi
al 
omponent 
omposition.SOFA allows modeling arbitrary 
omponent networks and 
omponent inter-a
tions. While every Mona
o 
omponent 
an only implement one providedinterfa
e, SOFA 
omponents 
an have multiple provided interfa
es.Re
ently, a new approa
h 
alled Threaded Behavior Proto
ols [KP�08℄,was presented. Threaded behavior proto
ols separate the provided interfa
edes
ription (provisions) from the internal behavior whi
h is again separatedinto rea
tions and threads. Rea
tions and threads make up the a
tual be-havior of the 
omponent, possible spread over multiple threads. In 
ontrastto threaded behavior proto
ols, our work extra
ts the a
tual behavior of a
omponent from the 
ode (implementation automaton), while in threadedbehavior proto
ols the implementation is expe
ted to meet the behavior ofthe rea
tions and threads se
tions of the proto
ol.Threaded behavior proto
ols support three main use 
ases:UC1: Corre
tness Che
k Given a 
omplete 
omponent appli
ation, showthat it does not 
ontain 
ommuni
ation errors.UC2: Substitutability Given two 
omponents, show that one 
an be re-pla
ed by the other in a spe
i�
 appli
ation or in any appli
ation.UC3: Code Conforman
e Ensure that a 
omponent implementation 
on-forms to its behavior spe
i�
ation.



150 CHAPTER 9. RELATED WORKThe work presented in this thesis supports all three use 
ases. The basi
use 
ase supported is the 
ode 
onforman
e 
he
k (UC3 ): 
omponents are
he
ked to ensure they 
onform to their 
ontra
ts with respe
t to the 
on-tra
ts of their sub
omponents. If all 
omponents of an appli
ation 
onformto their respe
tive 
ontra
ts, the 
omplete 
omponent hierar
hy is 
orre
t(UC1 ).UC2 is only partly supported by the 
he
king approa
h presented inChapter 6: Sin
e our veri�
ation approa
h 
he
ks 
omponents separately, itis possible to guarantee substitutability of two 
omponents, if, and only if,they implement the same interfa
e and thus 
onform to the same 
ontra
t.9.1.3 Interfa
e GrammarInterfa
e grammar [HB07℄ is a spe
i�
ation language based on grammarswhi
h des
ribe the valid usage of a Java 
omponent as a 
ontext free gram-mar. The grammar 
an be annotated with semanti
 a
tions (Java 
ode) andis then used to generate 
omponent stubs. These 
omponent stubs 
ontaina table-driven top-down parser whi
h regards method invo
ations as inputsymbols. A program using these 
omponent stubs is then stati
ally 
he
ked(using Java Path Finder) to verify that the 
omponents are used as spe
i�edby their interfa
e grammars. The language and tools are used in a frame-work for modular software model 
he
king and have been demonstrated onthe Enterprise JavaBeans Persisten
e API.Figure 9.1 shows the interfa
e grammar for a �le 
omponent. The gram-mar des
ribes that a �le 
an be opened and then read or written multipletimes. An open �le 
an also be 
losed. Double angle bra
kets separate se-manti
 a
tions from the interfa
e grammar. These a
tions are generated intothe resulting 
omponent stubs.We will take a 
loser look at the rule closed. The rule only a

epts themethod 
all open, upon whi
h it invokes the open method on some internal�le obje
t, returns that it has su

essfully invoked open and applies therule opened. If other any routine is 
alled, while the rule closed is a
tive,the se
ond (empty) 
ase statement triggers, whi
h does not report su

essfulexe
ution of any method (no return statement).An interfa
e grammar 
ompiler generates a Java 
lass for ea
h interfa
e
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class file implements IFile {
<< File f; ... >>;
rule start { apply closed; }
rule closed {

choose {
case ?open(): {
!<< f >>.open();
return open; apply opened;

}
case : { }
}

}
rule opened {

choose {
case ?read(): {
!<< f >>.read();
return read; apply opened;

}
case ?write(): {
!<< f >>.write();
return write; apply opened;

}
case ?close(): {
!<< f >>.close();
return close; apply closed;

}
case : { }
}

}
} Figure 9.1: Interfa
e grammar des
ription for a �le 
omponent.
grammar 
ontaining a table-driven top-down parser whi
h handles all method
alls a

epted by the grammar. The resulting Java 
lasses are 
omponentstubs, whi
h make sure that the 
omponent's routines are 
alled as di
tatedby their interfa
e grammars. A model 
he
ker is then able to stati
ally verifythat su
h a 
omponent is used in an orderly manner (the 
omponent stubsthrow ex
eptions when an illegal usage is found).The approa
h of interfa
e grammar is similar to our approa
h, in that
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NOT (vPSCAir.IsOpen() AND vPSCSolvent.IsOpen())Figure 9.2: Constraint for two valves: they should never be open at thesame time.they also aim at �nding illegal usage of 
omponents by some 
lient 
ode.Their des
ription of 
omponent behavior is based on 
ontext-free grammarsand therefore allows to spe
ify nested method 
alls. Safety properties, su
h asthe 
onstraints des
ribed in this work are not part of the interfa
e grammars.9.2 Che
king Safety PropertiesThe SPIN model 
he
ker (Simple Promela Interpreter) [Hol03℄ developed byGerard J. Holzmann uses LTL (linear temporal logi
) [CGP99℄ to des
ribesafety and liveness properties. Similar to the notion of 
onstraints, safetyproperties in LTL assert that nothing bad happens. If we express the 
on-straint in Figure 9.2 in LTL we getG¬(vPSCAir.IsOpen∧vPSCSolvent.IsOpen).In essen
e, only the globally operator is added. Unlike LTL, the 
onstraintspresented in this thesis do not allow stating liveness properties. In SPIN, pro-grams under veri�
ation are modeled in PROMELA (pro
ess meta language)and 
onsist of pro
esses whi
h may 
ommuni
ate with ea
h other.As most model 
he
king tools, SPIN is also aimed at expert programmerswho want to 
he
k safety and liveness properties of their 
ode. SPIN providesno support for end-user programmers. SPIN is therefore often used as ba
k-end in veri�
ation systems, where the program under veri�
ation is translatedto PROMELA 
ode. Amongst others, behavior proto
ols (see Se
tion 9.1.2)have been experimentally translated to PROMELA 
ode and then model
he
ked using SPIN [Kof07℄.Ball et al. (Mi
rosoft Resear
h) developed a stati
 analysis toolkit 
alledSLAM [BR01, BBC+06℄ that �nds API usage errors in C programs. Thetoolkit is used in the stati
 driver veri�er tool (SDV ) to �nd kernel APIusage errors in Windows devi
e drivers. First, an instrumented version of the
ode under veri�
ation is automati
ally generated. A tool then abstra
ts theinstrumented 
ode into a so-
alled Boolean program, 
onsisting of the orig-inal 
ontrol �ow 
onstru
ts and Boolean variables, only. API rules des
ribe
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hine. The en-vironment of the devi
e driver (operating system, kernel APIs) is modeled asa C program invoking the devi
e driver and simulating the kernel behavior.The instrumented and abstra
ted 
ode together with the environment
ode is then model 
he
ked by a separate tool (BEBOP [BR01℄). If a bug isfound, the abstra
tion is re�ned to �nd the 
ause of the bug. This abstra
-tion/re�nement loop is 
ontinued, until either the bug is 
on�rmed or thebug is found to be spurious.Mi
rosoft Code Contra
ts [ABF+09℄ provide a language-agnosti
 way toexpress 
oding assumptions in .NET programs. The 
ontra
ts take the formof pre
onditions, post
onditions, and obje
t invariants either stated dire
tlyin the 
ode or in so-
alled interfa
e 
ontra
ts. The 
ontra
ts 
an be stati
allyveri�ed, or 
he
ked at runtime. In addition, 
ontra
ts 
an be used to gener-ate do
umentation. Code 
ontra
ts are similar to the pre- and post
onditionsand 
onstraints in the 
ontra
ts des
ribed in this work. Their purpose is tohelp developers of .net appli
ations and libraries to stati
ally verify 
ertainproperties of their 
omponents, as well as to 
he
k the pre- and post
ondi-tions at runtime. The purpose of our work, however, is to guide end-users in
hanging 
omponent 
ode based on 
ontra
ts engineered by professional de-velopers. Out of all tools presented in this se
tion, Mi
rosoft Code Contra
tshave the best integration into a development environment (Mi
rosoft VisualStudio 2010 beta).9.3 Program RepairJobstmann et al. [JGB05,SJB05,GBHW05℄ try to �x problems in a programby building a produ
t of the broken program and the spe
i�
ation. Theyregard this as a game, where a winning strategy des
ribes a possible programrepair. Program repair is restri
ted to 
hanges in assignment statements (only
hanges on the left hand side of assignments), without making 
hanges to theprogram logi
 by 
hanging the 
ontrol �ow. Similar to our implementation,they assume a fault lo
alizer (the state mapping algorithm in our system) to�nd the problems beforehand.Farn et al. [WC08℄ de�ne a program repair based on graphi
al state-transition spe
i�
ations. They identify four atomi
 edit operations on the
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i�
ations (add and delete states as well as add and delete transitions).The 
ost of the program repair solely depends on the number of edit opera-tions used. The operations all have equal weight. Our approa
h, in 
ontrast,uses 
hange operations at a higher level where one operation (e.g., add orremove a routine 
all) results in several 
hanges to the stru
ture of the modelof the program. Moreover, our 
hange operations have di�erent weights, thusfavoring 
ertain 
hanges over others.Error 
orre
ting parsers sear
h for 
hanges in an erroneous program to
reate a synta
ti
ally 
orre
t program. Röhri
h [Röh80℄ proposes a methodby whi
h a sta
k-based parser is able to re
over from a synta
ti
 error ina program by sear
hing for a shortest path of the error state to a terminalstate of the parser (emergen
y route). This shortest path is then used to �nda mat
h between the next input symbols and the symbols expe
ted on thestates of the path to the terminal state. Symbols found in the input denotean
hors. If an an
hor is found, the symbols in the input sequen
e pre
edingthe an
hor are removed from the input, and symbols on the shortest path inthe parser's sta
k automaton are inserted into the input. This approa
h issimilar to our approa
h in that it tries to adapt the input sequen
e (imple-mentation automaton in our system) to mat
h the parser's sta
k automaton(proto
ol automaton in our system). In distin
tion to our approa
h, Röhri
huses an emergen
y route to a terminal state to �nd a state where parsing 
anbe resumed.The problem of program repair is similar to the problem of approximatestring mat
hing [Nav99℄. In approximate string mat
hing, a given string (pat-tern) is being mat
hed to another string whi
h is equal or similar to thepattern. The metri
 of 
loseness (also referred to as edit distan
e) des
ribesthe number of mismat
hing 
hara
ters in the string, where a mismat
h 
anbe 
orre
ted by insertion, removal or substitution of a 
hara
ter. The editdistan
e metri
 most often used is the Levenshtein distan
e measuring thenumber of edit operations ne
essary to 
hange the string su
h that it exa
tlymat
hes the pattern.The relation of approximate string mat
hing and program repair is, thatin program repair, the spe
i�
ation forms the pattern whi
h needs to bemat
hed in a program. If the pattern does not exa
tly mat
h, a mistake wasfound. The 
hanges ne
essary to repair the program, are the edit operations.While approximate string mat
hing is able to �nd mat
hes between a pattern
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h is not able to perform aknowledge update due to edit operations. In addition, the restri
ted set ofedit operations is not su�
ient for 
omplex patterns su
h as 
ontra
ts withpre
onditions and post
onditions.9.4 Program VisualizationTe
hniques similar to program visualization have been used in tea
hing anddebugging algorithms [MS93,BS84℄. These systems intera
t with a runningprogram by either 
alling the animation part expli
itly from the algorithm, orby binding the values of the variables to properties of the animation. There-fore, it is ne
essary to a
tually exe
ute (and optionally debug) the animatedprogram. Our system, in 
ontrast, visualizes the states of the 
omponents ofa program without exe
uting the 
ode, based on the 
ursor position in the
ode and state information dedu
ed by our stati
 analysis.Many other tools for algorithm visualization have been proposed. Theymostly aim at helping students learn how to program. These systems 
an be
ategorized into two main 
ategories [UFVI09℄:S
ript-based Systems. In these systems the user needs to manipulate thesour
e 
ode of the program/algorithm being visualized. Calls to thevisualization engine are added at 
ertain positions. Exe
uting the pro-gram then generates a visualization s
ript, whi
h shows the steps theprogram has taken (e.g., ANIMAL [RSF00℄).Compiler-based Systems. Compiler-based systems generate algorithm vi-sualizations without 
hanging the sour
e 
ode of the algorithm. Theintera
tion with the visualization system is added to the program au-tomati
ally by a 
ompiler (e.g., Ali
e [CDP03℄).We see the program visualization tool developed in this work to be in noneof the established 
ategories. In our system, the sour
e 
ode does not needto be 
hanged, in order to 
reate a visualization. Furthermore, the 
ompilerdoes not adapt the program automati
ally to intera
t with the visualizationsystem. The visualization is solely based on the state mapping algorithm andits knowledge update steps. We therefore suggest to introdu
e a new 
ategoryfor algorithm visualization tools based on stati
 analysis.
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Chapter 10Summary and Con
lusion
This 
hapter summarizes our approa
h on using formal methods to guideend-user programming. It presents the main 
ontributions and re
apitulatesthe main ideas of semanti
 assistan
e. Finally, this thesis is 
on
luded withan outlook on future work that would make the semanti
 assistan
e toolseven more useful.10.1 SummaryThis work presents an approa
h to support programming in industrial au-tomation by formal veri�
ation te
hniques. The approa
h allows spe
ifying
omponent 
ontra
ts and 
onstraints whi
h must be obeyed by 
lient pro-grams and veri�es that the 
lient program does not violate them. Based onthis veri�
ation approa
h, semanti
 assistan
e tools have been implementedto support programmers in writing semanti
ally 
orre
t programs. The vari-ous semanti
 assistan
e tools help programmers to use routine 
alls in validsequen
es, repair programs 
ontaining semanti
 errors, and understand a
lient program by visualizing the state of the 
omponents at a spe
i�
 lo
a-tion in the 
ode.We have adopted te
hniques from formal interfa
e spe
i�
ation [dAH01,Mey86℄, model 
he
king [CGP99℄, and knowledge 
hanges [KM91℄ in thiswork. Formal interfa
e spe
i�
ation te
hniques are used to spe
ify sequen
-ing 
onstraints of 
omponents, knowledge about state properties of 
ompo-157
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omponent 
onstraints. Model 
he
king and arti�
ialintelligen
e te
hniques are then used to verify that a 
lient program obeysthe 
ontra
ts and 
onstraints.The approa
h is based on Mona
o, a domain-spe
i�
 language for ma-
hine automation programming. It allows programming the rea
tive part ofan automation program and therefore has language 
onstru
ts to express ma-
hine operation sequen
es, has strong support for dealing with ex
eptionalsituations and allows parallel a
tivities. The behavioral model of Mona
o is
lose to StateCharts [Har87℄, however, an imperative, Pas
al-like style of pro-gramming is used. Most important,Mona
o allows hierar
hi
al abstra
tionof 
ontrol fun
tionality by a 
omponent-based approa
h whi
h allows build-ing 
omponents with interfa
es and hierar
hi
al stru
turing of 
omponents,where upper 
omponents are in full 
ontrol over their subordinates.Outline of the Approa
hOur programming guidan
e is based on 
ontra
ts and 
onstraints, whi
h areformal des
riptions of the intended behavior of 
omponent interfa
es (see Fig-ure 10.1). Mona
o 
omponents and their 
ontra
ts are translated into au-tomata (1),(2). The state mapping algorithm establishes a mapping betweenthe states in the automaton of a Mona
o 
omponent and the automataof its sub
omponents and may �nd 
ontra
t violations (3). In addition, thestates of a 
omponent are asso
iated with knowledge about the states of itssub
omponents. This information is derived from post
onditions in the 
on-tra
ts and 
onditional statements in the 
omponent implementation. Finally,the state mapping and asso
iated knowledge is used to verify 
onstraints.The annotated implementation automaton (4) is then used in variousend-user support s
enarios. Contra
t or 
onstraint violations (5) are reportedand highlighted at the respe
tive lo
ations in the 
ode editor. Based on the
ontra
ts and 
onstraints, the system 
an propose valid routine 
alls for asele
ted lo
ation (6). Similarly, a program 
ontaining a 
ontra
t violation 
anbe automati
ally repaired, based on repair strategies su
h that the program
omplies with the 
ontra
ts and 
onstraints(7). Finally, the system uses thestate mapping results at a spe
i�
 lo
ation in the 
ode to visualize the stateof the sub
omponents at that lo
ation.
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Contra
tsConstraints
Mona
oCode (1)Impl. Automaton

(2)Proto
ol Automata
(3)State Mapping (4)

AnnotatedImpl. Automaton
(5) Semanti
Errors(6) ProposalRepair(7) Visualization(8)

Figure 10.1: Steps in the system for end-user programming guidan
e.10.2 ContributionsIn the past de
ade, many veri�
ation systems emerged, from general model
he
kers like SPIN to spe
i�
 devi
e driver veri�ers like SDV. Still, a
tiveresear
h is going on in this �eld to provide tools to verify programs writtenin general programming languages. To the best of our knowledge, we arethe �rst to base restri
ted end-user guidan
e tools on formal methods andveri�
ation. The 
ontributions of this work are therefore as follows:� Contra
ts allowing to spe
ify the valid 
all sequen
es of routines as wellas guarantees (post
onditions) and required 
onditions (pre
onditions).� Constraints to express safety properties.� A veri�
ation pro
ess whi
h 
he
ks that a 
lient program obeys 
on-tra
ts and 
onstraints.� A knowledge dedu
tion pro
ess whi
h allows to dedu
e properties of
omponents ful�lled at parti
ular 
ode positions in the 
lient appli
a-tions.� Semanti
 Assistan
e tools whi
h propose 
ode fragments based on 
on-tra
ts and 
onstraints and aid in repairing 
lient programs.� A design-time visualization tool to visualize the state of a system at aposition in the 
ode and to help end users understand the program.



160 CHAPTER 10. SUMMARY AND CONCLUSION10.3 Future WorkSin
e our system is implemented as a prototype, there are many features thatwere not implemented but 
ould help the overall approa
h to be even moree�e
tive. This se
tion lists ideas for future work.� Without 
hanging the overall approa
h, adding support for routine pa-rameters and lo
al variables 
ould help to get additional informationabout the possible 
ontrol �ow.� Although the 
urrent notation of 
ontra
ts is su�
ient to des
ribe allpossible situations expressible by the automata, a more readable, pos-sibly graphi
al notation would ease development of 
ontra
ts. A draftof a better notation is shown in Listing C.2 in Appendix C.� Post
onditions in the 
ontra
t give guarantees about 
omponent states.Su
h a guarantee holds until it is invalidated by more re
ent knowledgeor it is retra
ted. Other types of post
onditions in a 
ontra
t would al-low the system to guarantee knowledge until the next WAIT statement,or for a 
ertain period of time only.� Invariants 
urrently only des
ribe invariant knowledge about a single
omponent. There are situations, in whi
h invariants among several
omponents 
an be useful to express physi
al dependen
ies among dif-ferent 
omponents.� Similar to systems like WhyLine [KM09℄, we 
ould extend the know-ledge update to preserve the history of the knowledge. We 
ould thennot only inform the user whi
h knowledge holds at a 
ertain lo
ation,but also give explanations on why parti
ular propositions hold (post-
ondition, retra
tion, 
ontrol �ow 
onditions). Su
h information wouldease diagnosis of semanti
 errors.10.4 Con
lusionsWe feel that there is a natural evolution from the early steps of writingspe
i�
ations over veri�
ation of software systems and debugging to guid-an
e tools and program repair. These tools are valuable not only in the
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hine automation, but also in other domains where restri
tedprogramming by end users is needed, and a similar style of programming isused. The restri
ted set of features of Mona
o eased mu
h of the language-spe
i�
 parts of the tools. Yet, it seems possible to employ similar tools inmore general languages like Java and C♯, and re
ent resear
h shows �rstresults [HB07,ABF+09℄.
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Appendix AKeplast Case Study Constraints
CONSTRAINT (IScrewCtrl screw, IHeatingCtrl heating)

[NOT (screw.isInFront() AND NOT heating.tempReached())]Listing A.1: Constraints used in the 
ase study Keplast.

163
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Appendix BDuerr Case Study Constraints
// Constraints @ HydrSolventCan

CONSTRAINT (IValve vPSCAir, IValve vPSCSolvent)

[NOT (vPSCAir.IsOpen() AND vPSCSolvent.IsOpen())]

CONSTRAINT (IValve vPSCAir, IValve vPSCDrain)

[NOT (vPSCAir.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vPSCSolvent, IValve vPSCDrain)

[NOT (vPSCSolvent.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vCanSFill)

[NOT (vCanSAir.IsOpen() AND vCanSFill.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vPSCSolvent)

[NOT (vCanSAir.IsOpen() AND vPSCSolvent.IsOpen())]

// Constraints @ SubChannel @ HOSE 1

CONSTRAINT (IValve vHose1Drain, IValve vHose1Air)

[NOT (vHose1Drain.IsOpen() AND vHose1Air.IsOpen())]

CONSTRAINT (IValve vHose1Air, IValve vHose1Color)

[NOT (vHose1Air.IsOpen() AND vHose1Color.IsOpen())]

// SubChannel @ ATOMIZER

CONSTRAINT (IValve vFMR, IValve vReflowAir)

[NOT (vFMR.IsOpen() AND vReflowAir.IsOpen())]

CONSTRAINT (IValve vFMR, IValve vMainSolventAVMR)

[NOT (vFMR.IsOpen() AND vMainSolventAVMR.IsOpen())]

CONSTRAINT (IValve vReflowAir, IValve vRFMRDrain)165
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[NOT (vReflowAir.IsOpen() AND vRFMRDrain.IsOpen())]

CONSTRAINT (IValve vMainSolventAVMR, IValve vRFMRDrain)

[NOT (vMainSolventAVMR.IsOpen()

AND vRFMRDrain.IsOpen())]

// Constraints @ MainChannel

CONSTRAINT (IValve vSolvent, IValve vColor)

[NOT (vSolvent.IsOpen() AND vColor.IsOpen())]

// Constraints @ ColorChanger

CONSTRAINT

(IValve vColGrey, IValve vColBlack, IValve vColRed,

IValve vColBlue, IValve vColGreen, IValve vColBrown,

IValve vColYellow, IValve vColWhite, IValve vColOrange,

IValve vColPink)

[

(vColGrey.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColBlack.IsOpen() AND (NOT vColGrey.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColBlue.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColGrey.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColRed.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColGrey.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())
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) OR

(vColGreen.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGrey.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColBrown.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColGrey.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColYellow.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColGrey.IsOpen()) AND (NOT vColWhite.IsOpen()) AND

(NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColWhite.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColGrey.IsOpen()) AND

(NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColOrange.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColGrey.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColPink.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColGrey.IsOpen())

) OR

(NOT vColGrey.IsOpen() AND NOT vColBlack.IsOpen() AND

NOT vColBlue.IsOpen() AND NOT vColRed.IsOpen() AND
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NOT vColGreen.IsOpen() AND NOT vColBrown.IsOpen() AND

NOT vColYellow.IsOpen() AND NOT vColWhite.IsOpen() AND

NOT vColOrange.IsOpen() AND NOT vColPink.IsOpen())

] Listing B.1: Constraints used in the 
ase study Duerr.



Appendix CEBNF Proto
ol Contra
tNotation
Listing C.1 lists the grammar of the EBNF proto
ol 
ontra
t notation.
SpecEBNF =

"EBNF" Identifier "=" SpecBlock "." .

SpecBlock = SpecStmts .

SpecStmts = { SpecStmt } .

SpecStmt =

(

RoutineCall

|

"(" SpecStmts

(

{ "|" SpecStmts }

|

{ "||" SpecStmts }

)

")"

|

"[" SpecStmts "]"

|

"{" SpecStmts "}" 169
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)

[ "on" EventCondition SpecStmt ]

.

EventCondition = Identifier .

RoutineCall = Identifier .Listing C.1: EBNF Proto
ol Contra
t Notation.Listing C.2 lists a draft of alternative produ
tions for the grammar ofthe EBNF proto
ol 
ontra
t notation. These alternative produ
tions allowto state invariants, pre
onditions, and post
onditions.
SpecEBNF =

"EBNF" [ "<" "Invariant" ":" Condition ">" ]

Identifier "=" SpecBlock "." .

RoutineCall = Identifier

{

"<"

("Pre" | "Post" | "Retract")

":" Condition

">"

} .

/* Due to reuse of Monaco condition parser, conditions */

/* are parsed as strings. */

Condition = { ANY } .Listing C.2: Draft of alternative RoutineCall and SpecEBNF produ
-tions with 
onditions.



Appendix DDetailed Proto
ol Contra
tNotation
Listing D.1 lists the grammar of the detailed proto
ol 
ontra
t notation. Thedetailed proto
ol 
ontra
t notation allows spe
ifying pre- and post
onditionsas well as initial and invariant 
onditions.
SpecDetail =

"Interface" Identifier [ Identifier ]

{ "[" "Invariant" ":" Condition "]" } ":"

{

["final"] ["initial"] Identifier { StateCondition }

"="

{

Identifier "." [ Identifier ] ("!"|"?") Identifier

}

"."

} .

StateCondition = "["

("Pre" | "Post" | "Retract") ":" Condition "]" .

/* Due to reuse of Monaco condition parser, conditions */

/* are parsed as strings. */

Condition = { ANY } .Listing D.1: Detailed Proto
ol Contra
t Notation.171
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Appendix EConstraint Notation
Listing E.1 lists the grammar of the 
onstraint notation.
Constraint =

"CONSTRAINT"

"("

Identifier Identifier

{ "," Identifier Identifier> }

")"

"[" Condition "]"

.

/* Due to reuse of Monaco condition parser, conditions */

/* are parsed as strings. */

Condition = { ANY } .Listing E.1: Constraint Notation in EBNF.
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